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The Real Number System

• Proposition:

Let p be a prime number. Then there are no integers m, n Î Z such that I m

n
M2

= p. 

Proof:

Suppose that such a number does in fact exist. That is, suppose that there is a rational 

fraction 
m

n
 such that I m

n
M
2

= p . We can assume that this fraction is in simplest terms, i.e. 

gcdHm, nL = 1, since otherwise we could just divide by the common factor and get an 

equivalent fraction. 

Then the equation above can be written as m2 = n2 p, which means that p m2 (p divides 

m2). Thus, it follows that p m. In particular, there exists an integer k such that m = k p, 

from which it follows that

 m2 = k2 p2 = n2 p � k2 p = n2

But this means that p n2 and therefore that p n.  (ÞÜ)

This is a contradiction, because 1 = gcdHm, nL ³ p > 1. Thus, we conclude that no rational 

function x2 = p exists.       à             

Observation: 

Let p be a prime number,  and set A = 9r Î Q
+ : r2 < p= and B = 9r Î Q

+ : r2 > p=. Then for 

each r Î A there exists s Î A, such that r < s. Similarly, for each r Î B there exists s Î B, 

such that s < r. 

Let’s define this number s :

ð If  r Î A, then

        r2 < p� r < p = r + J p - rN

            = r + J p - rN ×
J p + rN

J p + rN

            = r +
p- r2

p +r

> r +
p- r2

p+r

we call this number s

> r

ð Similarly, if r Î B, we have

                      r2 > p� r > p = r - Jr - p N

                             = r - Jr - p N ×
Jr + p N

Jr + p N

                          = r -
r2- p

r+ p

< r -
r2- p

r+ p

we call this number s

< r

Then s Î Q
+. If r Î A, then r2 - p < 0, implying that r < s. On the other hand, if r Î B, 

then r2 - p > 0, implying that r > s. 

Note: The observation above suggests that any element in B Ì Q is an upper bound of A. 

In other words, if s Î B and r Î A, then r < s. 

Furthermore A has no smallest upper bound (in R):

For any s Î B, there is an s1 < s, with s1 Î B, such that s1 is an upper bound of A. Similar 

reasoning shows that B is bounded below by elements in A with no largest lower bound. 

We will soon examine this observation more closely. 

Definition: Let S be a set. An order on S is a relation, denoted by < , with the following 

two properties:

(i) If x, y Î S, then one and only one of the statements below is true :

x < y,       x = y,      y < x

(ii) Let x, y, z Î S. Then if x < y and y < z, it is always true that x < z. 

Definition: An ordered set is a set S in which an order k is defined. For example, Q is an 

ordered set if r < s is defined to mean that s - r is a positive rational number. 

Definition: Suppose S is an ordered set, and E Ì S. If there exists a Β Î S such that 

x £ Β for every x Î E, then we say that E is bounded above, and call Β an upper bound of 

E. Lower bounds are defined in the same way (with ³ in place of £). 

Definition: Suppose S is an ordered set, E Ì S, and E is bounded above. Moreover, 

suppose there exists an Α Î S with the following properties:

(i)  Α is an upper bound of E.

(ii) If Γ < Α, then Γ is not an upper bound of E.

Then Α is called the least upper bound or supremum of E, denoted Α = supHEL.

The greatest lower bound, or infimum, of a set E which is bounded below is defined in 

the same manner. The statement Α = infHEL means that Α is a lower bound of E and that 

no Β with Β > Α is a lower bound of E. 

Example:

a) Consider the sets A and B described above as subsets of the ordered set Q. The set A 

is bounded above. In fact, the upper bounds of A are exactly the members of B. Since B 

contains no smallest member, A has no least upper bound in Q. Similarly, B is bounded 

below: the set of all lower bounds of B consists of A and of all r Î Q with r £ 0. Since A 

has no largest member, B has no greatest lower bound in Q.    

b) If Α = supHEL exists, then Α may or may not be a member of E. For instance, let E1 be 

the set of all r Î Q with r < 0. Let E2 be the set of all r Î Q with r £ 0. Then 

supHE1L = supHE2L = 0  with 0 Ï E1 and 0 Î E2.     

c) Let E consist of all numbers 1 � n, where n = 1, 2, 3, ...

Then supHEL = 1, which is in E, and infHEL = 0, which is not in E.                Ù

Definition: An ordered set S is said to have the least upper bound property if the follow-

ing is true: If E Ì S is not empty, and E is bounded above, then supHEL exists in S.   ** 

Note: Observe that Q does not have the least upper bound property. **

We now show that every set S with the least upper bound property also has the greatest 

lower bound property. 

• Theorem:

Suppose S is an ordered set with the least upper bound property and let B Ì S  be 

nonempty and bounded below. In addition, let L be the set of all lower bounds of B. 

Then Α = supHLL exists in S  and Α = infHBL. In particular, infHBL exists in S.

Proof:

Since B is bounded below, L is nonempty. Since L consists of exactly those y Î S which 

satisfy the inequality y £ x  " x Î B, we see that every x Î B is an upper bound of L. 

Then L is bounded above.

Our hypothesis about S implies therefore that L has a supremum in S, call it Α. If Γ < Α, 

then Γ is not an upper bound of L. In particular, there is some Β Î L such that Γ < Β, 

implying that Γ is a lower bound of B. Thus Α £ x  " x Î B. It follows that Α Î L. If Α < Λ, 

then Λ Ï L, since Α is an upper bound of L.

Thus we have shown that Α Î L but Λ Ï L if Α < Λ. In other words, Α is a lower bound of 

B but Λ is not if Λ > Α. This implies that Α = infHBL.                 à

• Existence Theorem:

There exists an ordered field R which has the least upper bound property. Moreover, R 

contains Q as a subfield. 

Proof: (On Rudin’s, chapter 1 appendix)             à

We now derive some important properties of the field R.

• Axiom of Completeness: 

Every nonempty set of real numbers that is bounded above has a least upper bound. 

• Theorem:

a) If x, y Î R, and x > 0, then there is a positive integer n such that n x > y. 

b) If x, y Î R, and x < y, then there exists a p Î Q such that x < p < y. 

**Note: Part a) is usually referred to as the archimedian property of  R. Part b) may be 

stated by saying that  Q is dense in  R: Between any two real numbers there is a rational 

one. **

Proof:

a) Set A = 8n x : n Î N<. Now let’s assume that a) is false, so that y is an upper bound of A, 

and define Α = supHAL. We have that x > 0, which implies that Α - x < Α, and this in turn 

means that Α - x  is not an upper bound of A. 

Hence Α - x < m x  for some positive integer m. But then Α < Hm + 1L x Î A, which contra-

dicts the statement that Α = supHAL. (ÞÜ)

Therefore A is not bounded above.        ª

b) Since x < y, we have y - x > 0. From a), we conclude that there is an integer n > 0 

such that  nH y - xL > 1. Observe that, for some integer m, we have m - 1 £ n x < m. 

Observe also that m £ 1 + n x < n y. 

Thus, since n x < m, we have n x < m < n y. In particular, x <
m

n
< y. This proves b), with 

p =
m

n
.      ª        à

 

Now we are ready to prove the existence of nth roots of positive reals. 

• Theorem: 

For every real x > 0 and every integer n > 0, there is one and only one real y such that 

yn = x. 

Proof:

That there is at most one such y is clear, since if there was another y1, then we would 

have y < y1, which implies that yn < y1
n or y1 < y which implies that y1

n < yn.    

Let E be the set consisting of all positive real numbers t such that tn < x, i.e. 

E = 8t Î R
+ : tn < x<, with x Î R. We first need to show that E is not empty. 

If we let  t =
x

1+x
, then 0 £ t < 1. Hence tn £ t < x, which means that t Î E, thus E is not 

empty. 

If t > 1 + x, then tn ³ t > x, so that t Ï E. Thus 1 + x is an upper bound of E. 

Hence, the existence theorem implies that there exists an element y such that 

y = supHEL. 

We initially set out to prove that yn = x. To show that this is true, we must now show 

that the inequalities yn < x  and yn > x  yield a contradiction. 

The identity 

       bn - an = Hb - aL Ibn-1 + bn-2 a + bn-3 a2 + ... + an-1M 

yields the inequality 

       bn - an < Hb - aL Ibn-1 + bn-1 + ... + bn-1M = Hb - aL n bn-1.

So

      bn - an < Hb - aL n bn-1      

when 0 < a < b.  

We are now going to use this identity. 

Let b > a > 0 and set h = b - a. So 0 < h < 1 and 

                      h <
x- yn

nH y+1Ln-1

Put a = y, b = y + h. Then

                      H y + hLn - yn < h nH y + hLn-1 < h nH y + 1Ln-1 < x - yn. 

Thus H y + hLn < x, and y + h Î E. Since y + h > y, this contradicts the fact that y is an 

upper bound of E. 

Assume that yn > x and then set 

                    k =
yn-x

n yn-1

Clearly k > 0. Observe that n k =
yn-x

yn-1
<

yn

yn-1
= y. 

In particular, 0 < k < y. 

Thus, 

         yn - H y - kLn < k n yn-1 = yn - x . 

In particular, 

              x < H y - kLn. 

It follows that y - k is an upper bound of E. 

But y - k < y, which contradicts the fact that y is the least upper bound of E. 

Hence, yn = x , as we set out to prove.  à

(Alternate) Proof:

Let E be defined as before. Follow the argument of the proof above to show that E is not 

empty and bounded above. Then set y = supHEL. 

We will show that yn = x  by proving that yn - x < Ε  for any Ε > 0.  This will imply that 

yn - x = 0  or yn = x. 

Let h > 0. If h < y, then y - h is a positive number that is not an upper bound of E. In 

particular, there is some t Î E such that y - h < t < y and therefore 

            H y - hLn < tn < x .

Thus, y - h Î E. 

Observe now that H y + hLn > x, for if H y + hLn £ x, then J y +
h

2
N
n

< H y + hLn £ x implying that 

y +
h

2
Î E and contradicting the fact that y is an upper bound of E. 

It follows that H y - hLn < x < H y + hLn. Naturally, H y - hLn < yn < H y + hLn. 

         

Geometrically, the distance from yn to x, yn - x , is less than H y + hLn - H y - hLn. This can 

be proven analytically without much difficulty. 

Thus, 

yn - x < H y + hLn - H y - hLn = 2 Ú
i=0

f
n-1

2
v

n

2 i + 1
yn-2 i-1 h2 i+1

       < 2 h Ú
i=0

f
n-1

2
v

n

2 i + 1
yn-2 i-1

The expression 

                                  2 Ú
i=0

f
n-1

2
v

n

2 i + 1
yn-2 i-1 h2 i

was derived from expanding H y + hLn - H y - hLn with the help of the binomial theorem. The 

last inequality was derived from the assumption that h may be selected to be less than 1. 

Notice that B = 2 Ú
i=0

f
n-1

2
v

n

2 i + 1
yn-2 i-1 is just a number and h B < Ε for any Ε given a suffi-

ciently small h. Thus, yn - x < Ε as desired.    à

• Corollary: 

If a and b are positive real numbers and n is a positive integer, then

 Ha bL1�n = a1�n b1�n

Proof:

Let Α = a1�n and Β = b1�n. Then 

 a b = Αn Βn = HΑ ΒLn,

since multiplication is commutative. The uniqueness assertion of the theorem to which 

this is a corollary shows that 

Ha bL1�n = Α Β = a1�n b1�n.       à

One approach to describe the elements of  R is by using decimals. The following proposi-

tions give some insight. 

• Proposition:

Fix an integer p ³ 2 and let 8an< be any sequence of integers satisfying 0 £ an £ p - 1 for 

all n. Then, Ú
n=1

¥
an

pn converges to a number in @0, 1D. 

Proof:

Since an ³ 0, the partial sums Ú
n=1

N
an

pn  are nonnegative and increase with N . Thus, to show 

that the series converges to some number in @0, 1D, we just need to show that 1 is an 

upper bound for the sequence of partial sums. 

But this is easy:

     Ú
n=1

N
an

pn £ Ú
n=1

N
p-1

pn £ I p - 1M Ú
n=1

¥
1

pn = 1 à

Consequently, each x in @0, 1D can be so represented:

• Proposition:

Let p be an integer, p ³ 2, and let 0 £ x £ 1. Then there is a sequence of integers 8an< 

with 0 £ an £ p - 1 for all n such that x = Ú
n=1

¥
an

pn .

Proof:

Certainly the case x = 0 causes no real strain, so let us suppose that 0 < x £ 1. We will 

then construct 8an< by induction. 

Choose a1 to be the largest integer satisfying 
a1

p
< x. Since x > 0, it follows that a1 ³ 0; 

and since x £ 1, we have a1 < p. Because a1 is an integer, this means that a1 £ p - 1. Also, 

since a1 is largest, we must have

  
a1

p
< x £

a1+1
p

.

Next, choose a2 to be the largest integer satisfying 
a1

p
+

a2

p2
< x.

Check that 0 £ a2 £ p - 1 and that

        
a1

p
+

a2

p2
< x £

a1

p
+

a2 +1

p2
.

Thus, by induction we get a sequence of integers 8an< 
with 0 £ an £ p - 1 such that 

                  
a1

p
+ ... +

an

pn
< x £

a1

p
+ ... +

an +1

pn

Obviously, x = Ú
n=1

¥
an

pn . (Why??)    à 

Note: The series Ú
n=1

¥
an

pn  is called a base p (or p-adic) decimal expansion for x. It is some-

times written in the shorter form 

       x = 0. a1 a2 a3 ... Ibase pM .

It does not have to be unique (even for ordinary base 10 decimals: 0.5 = 0.4999 ...). One 

problem is that our construction is designed to produce nonterminating decimal expan-

sions. In the particular case where x =
a1

p
+ ... +

an +1

p
n =

q

pn , for some integer 0 < q £ pn, 

the construction will give us a repeating string of p - 1’s  in the decimal expansion for x 

since 
1

pn = Ú
k=n+1

¥
p-1

pk
. That is, any such x has two distinct base p decimal expansions: 

       x =
a1

p
+ ... +

an +1

p
n =

a1

p
+ ... +

an

p
n + Ú

k=n+1

¥
p-1

pk

Notice that if y Î R, for any n Î N we have y Î @n, n + 1D. In particular, there is some 

x Î @0, 1D such that y = n + x. By the work done above, this means that any real number y 

is an infinite sum of rational numbers.

Note: This is the end of our introductory discussion of the real line. The theorem below 

belongs to the complex realm and, since our focus on this course is on real numbers, this 

is the only theorem of complex variables that I will include in these notes (and I’m includ-

ing it because of its relevance).  

• Theorem (Cauchy-Schwarz inequality): 

If a1, ..., an and  b1, ..., bn are complex numbers, then 

      Ú
j=1

n

a j b j

2

£ Ú
j=1

n

¡a j¥
2 Ú

j=1

n

 b j¤
2

      

Proof:

Let A = â ¡a j¥
2
, B = â  b j¤

2
, and C = âa j b j. 

If B = 0, then b1 =. .. = bn = 0, and the conclusion is trivial. 

Therefore, assume B > 0. Then, 

0 £ â¡B a j - C b j¥
2

= âIB a j - C b jM IB a j - C b jM

     = B2 â ¡ a j ¥2 - B C âa j b j - B C Úa j b j +   C ¤2 â ¡ b j ¥2

     = B2 A - B   C ¤2 = BIA B -   C ¤2M

This implies that A B -   C ¤2 ³ 0, so A B ³   C ¤2. à



• Proposition:

Let p be a prime number. Then there are no integers m, n Î Z such that I m

n
M2

= p. 

Proof:

Suppose that such a number does in fact exist. That is, suppose that there is a rational 

fraction 
m

n
 such that I m

n
M
2

= p . We can assume that this fraction is in simplest terms, i.e. 

gcdHm, nL = 1, since otherwise we could just divide by the common factor and get an 

equivalent fraction. 

Then the equation above can be written as m2 = n2 p, which means that p m2 (p divides 

m2). Thus, it follows that p m. In particular, there exists an integer k such that m = k p, 

from which it follows that

 m2 = k2 p2 = n2 p � k2 p = n2

But this means that p n2 and therefore that p n.  (ÞÜ)

This is a contradiction, because 1 = gcdHm, nL ³ p > 1. Thus, we conclude that no rational 

function x2 = p exists.       à             

Observation: 

Let p be a prime number,  and set A = 9r Î Q
+ : r2 < p= and B = 9r Î Q

+ : r2 > p=. Then for 

each r Î A there exists s Î A, such that r < s. Similarly, for each r Î B there exists s Î B, 

such that s < r. 

Let’s define this number s :

ð If  r Î A, then

        r2 < p� r < p = r + J p - rN

            = r + J p - rN ×
J p + rN

J p + rN

            = r +
p- r2

p +r

> r +
p- r2

p+r

we call this number s

> r

ð Similarly, if r Î B, we have

                      r2 > p� r > p = r - Jr - p N

                             = r - Jr - p N ×
Jr + p N

Jr + p N

                          = r -
r2- p

r+ p

< r -
r2- p

r+ p

we call this number s

< r

Then s Î Q
+. If r Î A, then r2 - p < 0, implying that r < s. On the other hand, if r Î B, 

then r2 - p > 0, implying that r > s. 

Note: The observation above suggests that any element in B Ì Q is an upper bound of A. 

In other words, if s Î B and r Î A, then r < s. 

Furthermore A has no smallest upper bound (in R):

For any s Î B, there is an s1 < s, with s1 Î B, such that s1 is an upper bound of A. Similar 

reasoning shows that B is bounded below by elements in A with no largest lower bound. 

We will soon examine this observation more closely. 

Definition: Let S be a set. An order on S is a relation, denoted by < , with the following 

two properties:

(i) If x, y Î S, then one and only one of the statements below is true :

x < y,       x = y,      y < x

(ii) Let x, y, z Î S. Then if x < y and y < z, it is always true that x < z. 

Definition: An ordered set is a set S in which an order k is defined. For example, Q is an 

ordered set if r < s is defined to mean that s - r is a positive rational number. 

Definition: Suppose S is an ordered set, and E Ì S. If there exists a Β Î S such that 

x £ Β for every x Î E, then we say that E is bounded above, and call Β an upper bound of 

E. Lower bounds are defined in the same way (with ³ in place of £). 

Definition: Suppose S is an ordered set, E Ì S, and E is bounded above. Moreover, 

suppose there exists an Α Î S with the following properties:

(i)  Α is an upper bound of E.

(ii) If Γ < Α, then Γ is not an upper bound of E.

Then Α is called the least upper bound or supremum of E, denoted Α = supHEL.

The greatest lower bound, or infimum, of a set E which is bounded below is defined in 

the same manner. The statement Α = infHEL means that Α is a lower bound of E and that 

no Β with Β > Α is a lower bound of E. 

Example:

a) Consider the sets A and B described above as subsets of the ordered set Q. The set A 

is bounded above. In fact, the upper bounds of A are exactly the members of B. Since B 

contains no smallest member, A has no least upper bound in Q. Similarly, B is bounded 

below: the set of all lower bounds of B consists of A and of all r Î Q with r £ 0. Since A 

has no largest member, B has no greatest lower bound in Q.    

b) If Α = supHEL exists, then Α may or may not be a member of E. For instance, let E1 be 

the set of all r Î Q with r < 0. Let E2 be the set of all r Î Q with r £ 0. Then 

supHE1L = supHE2L = 0  with 0 Ï E1 and 0 Î E2.     

c) Let E consist of all numbers 1 � n, where n = 1, 2, 3, ...

Then supHEL = 1, which is in E, and infHEL = 0, which is not in E.                Ù

Definition: An ordered set S is said to have the least upper bound property if the follow-

ing is true: If E Ì S is not empty, and E is bounded above, then supHEL exists in S.   ** 

Note: Observe that Q does not have the least upper bound property. **

We now show that every set S with the least upper bound property also has the greatest 

lower bound property. 

• Theorem:

Suppose S is an ordered set with the least upper bound property and let B Ì S  be 

nonempty and bounded below. In addition, let L be the set of all lower bounds of B. 

Then Α = supHLL exists in S  and Α = infHBL. In particular, infHBL exists in S.

Proof:

Since B is bounded below, L is nonempty. Since L consists of exactly those y Î S which 

satisfy the inequality y £ x  " x Î B, we see that every x Î B is an upper bound of L. 

Then L is bounded above.

Our hypothesis about S implies therefore that L has a supremum in S, call it Α. If Γ < Α, 

then Γ is not an upper bound of L. In particular, there is some Β Î L such that Γ < Β, 

implying that Γ is a lower bound of B. Thus Α £ x  " x Î B. It follows that Α Î L. If Α < Λ, 

then Λ Ï L, since Α is an upper bound of L.

Thus we have shown that Α Î L but Λ Ï L if Α < Λ. In other words, Α is a lower bound of 

B but Λ is not if Λ > Α. This implies that Α = infHBL.                 à

• Existence Theorem:

There exists an ordered field R which has the least upper bound property. Moreover, R 

contains Q as a subfield. 

Proof: (On Rudin’s, chapter 1 appendix)             à

We now derive some important properties of the field R.

• Axiom of Completeness: 

Every nonempty set of real numbers that is bounded above has a least upper bound. 

• Theorem:

a) If x, y Î R, and x > 0, then there is a positive integer n such that n x > y. 

b) If x, y Î R, and x < y, then there exists a p Î Q such that x < p < y. 

**Note: Part a) is usually referred to as the archimedian property of  R. Part b) may be 

stated by saying that  Q is dense in  R: Between any two real numbers there is a rational 

one. **

Proof:

a) Set A = 8n x : n Î N<. Now let’s assume that a) is false, so that y is an upper bound of A, 

and define Α = supHAL. We have that x > 0, which implies that Α - x < Α, and this in turn 

means that Α - x  is not an upper bound of A. 

Hence Α - x < m x  for some positive integer m. But then Α < Hm + 1L x Î A, which contra-

dicts the statement that Α = supHAL. (ÞÜ)

Therefore A is not bounded above.        ª

b) Since x < y, we have y - x > 0. From a), we conclude that there is an integer n > 0 

such that  nH y - xL > 1. Observe that, for some integer m, we have m - 1 £ n x < m. 

Observe also that m £ 1 + n x < n y. 

Thus, since n x < m, we have n x < m < n y. In particular, x <
m

n
< y. This proves b), with 

p =
m

n
.      ª        à

 

Now we are ready to prove the existence of nth roots of positive reals. 

• Theorem: 

For every real x > 0 and every integer n > 0, there is one and only one real y such that 

yn = x. 

Proof:

That there is at most one such y is clear, since if there was another y1, then we would 

have y < y1, which implies that yn < y1
n or y1 < y which implies that y1

n < yn.    

Let E be the set consisting of all positive real numbers t such that tn < x, i.e. 

E = 8t Î R
+ : tn < x<, with x Î R. We first need to show that E is not empty. 

If we let  t =
x

1+x
, then 0 £ t < 1. Hence tn £ t < x, which means that t Î E, thus E is not 

empty. 

If t > 1 + x, then tn ³ t > x, so that t Ï E. Thus 1 + x is an upper bound of E. 

Hence, the existence theorem implies that there exists an element y such that 

y = supHEL. 

We initially set out to prove that yn = x. To show that this is true, we must now show 

that the inequalities yn < x  and yn > x  yield a contradiction. 

The identity 

       bn - an = Hb - aL Ibn-1 + bn-2 a + bn-3 a2 + ... + an-1M 

yields the inequality 

       bn - an < Hb - aL Ibn-1 + bn-1 + ... + bn-1M = Hb - aL n bn-1.

So

      bn - an < Hb - aL n bn-1      

when 0 < a < b.  

We are now going to use this identity. 

Let b > a > 0 and set h = b - a. So 0 < h < 1 and 

                      h <
x- yn

nH y+1Ln-1

Put a = y, b = y + h. Then

                      H y + hLn - yn < h nH y + hLn-1 < h nH y + 1Ln-1 < x - yn. 

Thus H y + hLn < x, and y + h Î E. Since y + h > y, this contradicts the fact that y is an 

upper bound of E. 

Assume that yn > x and then set 

                    k =
yn-x

n yn-1

Clearly k > 0. Observe that n k =
yn-x

yn-1
<

yn

yn-1
= y. 

In particular, 0 < k < y. 

Thus, 

         yn - H y - kLn < k n yn-1 = yn - x . 

In particular, 

              x < H y - kLn. 

It follows that y - k is an upper bound of E. 

But y - k < y, which contradicts the fact that y is the least upper bound of E. 

Hence, yn = x , as we set out to prove.  à

(Alternate) Proof:

Let E be defined as before. Follow the argument of the proof above to show that E is not 

empty and bounded above. Then set y = supHEL. 

We will show that yn = x  by proving that yn - x < Ε  for any Ε > 0.  This will imply that 

yn - x = 0  or yn = x. 

Let h > 0. If h < y, then y - h is a positive number that is not an upper bound of E. In 

particular, there is some t Î E such that y - h < t < y and therefore 

            H y - hLn < tn < x .

Thus, y - h Î E. 

Observe now that H y + hLn > x, for if H y + hLn £ x, then J y +
h

2
N
n

< H y + hLn £ x implying that 

y +
h

2
Î E and contradicting the fact that y is an upper bound of E. 

It follows that H y - hLn < x < H y + hLn. Naturally, H y - hLn < yn < H y + hLn. 

         

Geometrically, the distance from yn to x, yn - x , is less than H y + hLn - H y - hLn. This can 

be proven analytically without much difficulty. 

Thus, 

yn - x < H y + hLn - H y - hLn = 2 Ú
i=0

f
n-1

2
v

n

2 i + 1
yn-2 i-1 h2 i+1

       < 2 h Ú
i=0

f
n-1

2
v

n

2 i + 1
yn-2 i-1

The expression 

                                  2 Ú
i=0

f
n-1

2
v

n

2 i + 1
yn-2 i-1 h2 i

was derived from expanding H y + hLn - H y - hLn with the help of the binomial theorem. The 

last inequality was derived from the assumption that h may be selected to be less than 1. 

Notice that B = 2 Ú
i=0

f
n-1

2
v

n

2 i + 1
yn-2 i-1 is just a number and h B < Ε for any Ε given a suffi-

ciently small h. Thus, yn - x < Ε as desired.    à

• Corollary: 

If a and b are positive real numbers and n is a positive integer, then

 Ha bL1�n = a1�n b1�n

Proof:

Let Α = a1�n and Β = b1�n. Then 

 a b = Αn Βn = HΑ ΒLn,

since multiplication is commutative. The uniqueness assertion of the theorem to which 

this is a corollary shows that 

Ha bL1�n = Α Β = a1�n b1�n.       à

One approach to describe the elements of  R is by using decimals. The following proposi-

tions give some insight. 

• Proposition:

Fix an integer p ³ 2 and let 8an< be any sequence of integers satisfying 0 £ an £ p - 1 for 

all n. Then, Ú
n=1

¥
an

pn converges to a number in @0, 1D. 

Proof:

Since an ³ 0, the partial sums Ú
n=1

N
an

pn  are nonnegative and increase with N . Thus, to show 

that the series converges to some number in @0, 1D, we just need to show that 1 is an 

upper bound for the sequence of partial sums. 

But this is easy:

     Ú
n=1

N
an

pn £ Ú
n=1

N
p-1

pn £ I p - 1M Ú
n=1

¥
1

pn = 1 à

Consequently, each x in @0, 1D can be so represented:

• Proposition:

Let p be an integer, p ³ 2, and let 0 £ x £ 1. Then there is a sequence of integers 8an< 

with 0 £ an £ p - 1 for all n such that x = Ú
n=1

¥
an

pn .

Proof:

Certainly the case x = 0 causes no real strain, so let us suppose that 0 < x £ 1. We will 

then construct 8an< by induction. 

Choose a1 to be the largest integer satisfying 
a1

p
< x. Since x > 0, it follows that a1 ³ 0; 

and since x £ 1, we have a1 < p. Because a1 is an integer, this means that a1 £ p - 1. Also, 

since a1 is largest, we must have

  
a1

p
< x £

a1+1
p

.

Next, choose a2 to be the largest integer satisfying 
a1

p
+

a2

p2
< x.

Check that 0 £ a2 £ p - 1 and that

        
a1

p
+

a2

p2
< x £

a1

p
+

a2 +1

p2
.

Thus, by induction we get a sequence of integers 8an< 
with 0 £ an £ p - 1 such that 

                  
a1

p
+ ... +

an

pn
< x £

a1

p
+ ... +

an +1

pn

Obviously, x = Ú
n=1

¥
an

pn . (Why??)    à 

Note: The series Ú
n=1

¥
an

pn  is called a base p (or p-adic) decimal expansion for x. It is some-

times written in the shorter form 

       x = 0. a1 a2 a3 ... Ibase pM .

It does not have to be unique (even for ordinary base 10 decimals: 0.5 = 0.4999 ...). One 

problem is that our construction is designed to produce nonterminating decimal expan-

sions. In the particular case where x =
a1

p
+ ... +

an +1

p
n =

q

pn , for some integer 0 < q £ pn, 

the construction will give us a repeating string of p - 1’s  in the decimal expansion for x 

since 
1

pn = Ú
k=n+1

¥
p-1

pk
. That is, any such x has two distinct base p decimal expansions: 

       x =
a1

p
+ ... +

an +1

p
n =

a1

p
+ ... +

an

p
n + Ú

k=n+1

¥
p-1

pk

Notice that if y Î R, for any n Î N we have y Î @n, n + 1D. In particular, there is some 

x Î @0, 1D such that y = n + x. By the work done above, this means that any real number y 

is an infinite sum of rational numbers.

Note: This is the end of our introductory discussion of the real line. The theorem below 

belongs to the complex realm and, since our focus on this course is on real numbers, this 

is the only theorem of complex variables that I will include in these notes (and I’m includ-

ing it because of its relevance).  

• Theorem (Cauchy-Schwarz inequality): 

If a1, ..., an and  b1, ..., bn are complex numbers, then 

      Ú
j=1

n

a j b j

2

£ Ú
j=1

n

¡a j¥
2 Ú

j=1

n

 b j¤
2

      

Proof:

Let A = â ¡a j¥
2
, B = â  b j¤

2
, and C = âa j b j. 

If B = 0, then b1 =. .. = bn = 0, and the conclusion is trivial. 

Therefore, assume B > 0. Then, 

0 £ â¡B a j - C b j¥
2

= âIB a j - C b jM IB a j - C b jM

     = B2 â ¡ a j ¥2 - B C âa j b j - B C Úa j b j +   C ¤2 â ¡ b j ¥2

     = B2 A - B   C ¤2 = BIA B -   C ¤2M

This implies that A B -   C ¤2 ³ 0, so A B ³   C ¤2. à
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• Proposition:

Let p be a prime number. Then there are no integers m, n Î Z such that I m

n
M2

= p. 

Proof:

Suppose that such a number does in fact exist. That is, suppose that there is a rational 

fraction 
m

n
 such that I m

n
M
2

= p . We can assume that this fraction is in simplest terms, i.e. 

gcdHm, nL = 1, since otherwise we could just divide by the common factor and get an 

equivalent fraction. 

Then the equation above can be written as m2 = n2 p, which means that p m2 (p divides 

m2). Thus, it follows that p m. In particular, there exists an integer k such that m = k p, 

from which it follows that

 m2 = k2 p2 = n2 p � k2 p = n2

But this means that p n2 and therefore that p n.  (ÞÜ)

This is a contradiction, because 1 = gcdHm, nL ³ p > 1. Thus, we conclude that no rational 

function x2 = p exists.       à             

Observation: 

Let p be a prime number,  and set A = 9r Î Q
+ : r2 < p= and B = 9r Î Q

+ : r2 > p=. Then for 

each r Î A there exists s Î A, such that r < s. Similarly, for each r Î B there exists s Î B, 

such that s < r. 

Let’s define this number s :

ð If  r Î A, then

        r2 < p� r < p = r + J p - rN

            = r + J p - rN ×
J p + rN

J p + rN

            = r +
p- r2

p +r

> r +
p- r2

p+r

we call this number s

> r

ð Similarly, if r Î B, we have

                      r2 > p� r > p = r - Jr - p N

                             = r - Jr - p N ×
Jr + p N

Jr + p N

                          = r -
r2- p

r+ p

< r -
r2- p

r+ p

we call this number s

< r

Then s Î Q
+. If r Î A, then r2 - p < 0, implying that r < s. On the other hand, if r Î B, 

then r2 - p > 0, implying that r > s. 

Note: The observation above suggests that any element in B Ì Q is an upper bound of A. 

In other words, if s Î B and r Î A, then r < s. 

Furthermore A has no smallest upper bound (in R):

For any s Î B, there is an s1 < s, with s1 Î B, such that s1 is an upper bound of A. Similar 

reasoning shows that B is bounded below by elements in A with no largest lower bound. 

We will soon examine this observation more closely. 

Definition: Let S be a set. An order on S is a relation, denoted by < , with the following 

two properties:

(i) If x, y Î S, then one and only one of the statements below is true :

x < y,       x = y,      y < x

(ii) Let x, y, z Î S. Then if x < y and y < z, it is always true that x < z. 

Definition: An ordered set is a set S in which an order k is defined. For example, Q is an 

ordered set if r < s is defined to mean that s - r is a positive rational number. 

Definition: Suppose S is an ordered set, and E Ì S. If there exists a Β Î S such that 

x £ Β for every x Î E, then we say that E is bounded above, and call Β an upper bound of 

E. Lower bounds are defined in the same way (with ³ in place of £). 

Definition: Suppose S is an ordered set, E Ì S, and E is bounded above. Moreover, 

suppose there exists an Α Î S with the following properties:

(i)  Α is an upper bound of E.

(ii) If Γ < Α, then Γ is not an upper bound of E.

Then Α is called the least upper bound or supremum of E, denoted Α = supHEL.

The greatest lower bound, or infimum, of a set E which is bounded below is defined in 

the same manner. The statement Α = infHEL means that Α is a lower bound of E and that 

no Β with Β > Α is a lower bound of E. 

Example:

a) Consider the sets A and B described above as subsets of the ordered set Q. The set A 

is bounded above. In fact, the upper bounds of A are exactly the members of B. Since B 

contains no smallest member, A has no least upper bound in Q. Similarly, B is bounded 

below: the set of all lower bounds of B consists of A and of all r Î Q with r £ 0. Since A 

has no largest member, B has no greatest lower bound in Q.    

b) If Α = supHEL exists, then Α may or may not be a member of E. For instance, let E1 be 

the set of all r Î Q with r < 0. Let E2 be the set of all r Î Q with r £ 0. Then 

supHE1L = supHE2L = 0  with 0 Ï E1 and 0 Î E2.     

c) Let E consist of all numbers 1 � n, where n = 1, 2, 3, ...

Then supHEL = 1, which is in E, and infHEL = 0, which is not in E.                Ù

Definition: An ordered set S is said to have the least upper bound property if the follow-

ing is true: If E Ì S is not empty, and E is bounded above, then supHEL exists in S.   ** 

Note: Observe that Q does not have the least upper bound property. **

We now show that every set S with the least upper bound property also has the greatest 

lower bound property. 

• Theorem:

Suppose S is an ordered set with the least upper bound property and let B Ì S  be 

nonempty and bounded below. In addition, let L be the set of all lower bounds of B. 

Then Α = supHLL exists in S  and Α = infHBL. In particular, infHBL exists in S.

Proof:

Since B is bounded below, L is nonempty. Since L consists of exactly those y Î S which 

satisfy the inequality y £ x  " x Î B, we see that every x Î B is an upper bound of L. 

Then L is bounded above.

Our hypothesis about S implies therefore that L has a supremum in S, call it Α. If Γ < Α, 

then Γ is not an upper bound of L. In particular, there is some Β Î L such that Γ < Β, 

implying that Γ is a lower bound of B. Thus Α £ x  " x Î B. It follows that Α Î L. If Α < Λ, 

then Λ Ï L, since Α is an upper bound of L.

Thus we have shown that Α Î L but Λ Ï L if Α < Λ. In other words, Α is a lower bound of 

B but Λ is not if Λ > Α. This implies that Α = infHBL.                 à

• Existence Theorem:

There exists an ordered field R which has the least upper bound property. Moreover, R 

contains Q as a subfield. 

Proof: (On Rudin’s, chapter 1 appendix)             à

We now derive some important properties of the field R.

• Axiom of Completeness: 

Every nonempty set of real numbers that is bounded above has a least upper bound. 

• Theorem:

a) If x, y Î R, and x > 0, then there is a positive integer n such that n x > y. 

b) If x, y Î R, and x < y, then there exists a p Î Q such that x < p < y. 

**Note: Part a) is usually referred to as the archimedian property of  R. Part b) may be 

stated by saying that  Q is dense in  R: Between any two real numbers there is a rational 

one. **

Proof:

a) Set A = 8n x : n Î N<. Now let’s assume that a) is false, so that y is an upper bound of A, 

and define Α = supHAL. We have that x > 0, which implies that Α - x < Α, and this in turn 

means that Α - x  is not an upper bound of A. 

Hence Α - x < m x  for some positive integer m. But then Α < Hm + 1L x Î A, which contra-

dicts the statement that Α = supHAL. (ÞÜ)

Therefore A is not bounded above.        ª

b) Since x < y, we have y - x > 0. From a), we conclude that there is an integer n > 0 

such that  nH y - xL > 1. Observe that, for some integer m, we have m - 1 £ n x < m. 

Observe also that m £ 1 + n x < n y. 

Thus, since n x < m, we have n x < m < n y. In particular, x <
m

n
< y. This proves b), with 

p =
m

n
.      ª        à

 

Now we are ready to prove the existence of nth roots of positive reals. 

• Theorem: 

For every real x > 0 and every integer n > 0, there is one and only one real y such that 

yn = x. 

Proof:

That there is at most one such y is clear, since if there was another y1, then we would 

have y < y1, which implies that yn < y1
n or y1 < y which implies that y1

n < yn.    

Let E be the set consisting of all positive real numbers t such that tn < x, i.e. 

E = 8t Î R
+ : tn < x<, with x Î R. We first need to show that E is not empty. 

If we let  t =
x

1+x
, then 0 £ t < 1. Hence tn £ t < x, which means that t Î E, thus E is not 

empty. 

If t > 1 + x, then tn ³ t > x, so that t Ï E. Thus 1 + x is an upper bound of E. 

Hence, the existence theorem implies that there exists an element y such that 

y = supHEL. 

We initially set out to prove that yn = x. To show that this is true, we must now show 

that the inequalities yn < x  and yn > x  yield a contradiction. 

The identity 

       bn - an = Hb - aL Ibn-1 + bn-2 a + bn-3 a2 + ... + an-1M 

yields the inequality 

       bn - an < Hb - aL Ibn-1 + bn-1 + ... + bn-1M = Hb - aL n bn-1.

So

      bn - an < Hb - aL n bn-1      

when 0 < a < b.  

We are now going to use this identity. 

Let b > a > 0 and set h = b - a. So 0 < h < 1 and 

                      h <
x- yn

nH y+1Ln-1

Put a = y, b = y + h. Then

                      H y + hLn - yn < h nH y + hLn-1 < h nH y + 1Ln-1 < x - yn. 

Thus H y + hLn < x, and y + h Î E. Since y + h > y, this contradicts the fact that y is an 

upper bound of E. 

Assume that yn > x and then set 

                    k =
yn-x

n yn-1

Clearly k > 0. Observe that n k =
yn-x

yn-1
<

yn

yn-1
= y. 

In particular, 0 < k < y. 

Thus, 

         yn - H y - kLn < k n yn-1 = yn - x . 

In particular, 

              x < H y - kLn. 

It follows that y - k is an upper bound of E. 

But y - k < y, which contradicts the fact that y is the least upper bound of E. 

Hence, yn = x , as we set out to prove.  à

(Alternate) Proof:

Let E be defined as before. Follow the argument of the proof above to show that E is not 

empty and bounded above. Then set y = supHEL. 

We will show that yn = x  by proving that yn - x < Ε  for any Ε > 0.  This will imply that 

yn - x = 0  or yn = x. 

Let h > 0. If h < y, then y - h is a positive number that is not an upper bound of E. In 

particular, there is some t Î E such that y - h < t < y and therefore 

            H y - hLn < tn < x .

Thus, y - h Î E. 

Observe now that H y + hLn > x, for if H y + hLn £ x, then J y +
h

2
N
n

< H y + hLn £ x implying that 

y +
h

2
Î E and contradicting the fact that y is an upper bound of E. 

It follows that H y - hLn < x < H y + hLn. Naturally, H y - hLn < yn < H y + hLn. 

         

Geometrically, the distance from yn to x, yn - x , is less than H y + hLn - H y - hLn. This can 

be proven analytically without much difficulty. 

Thus, 

yn - x < H y + hLn - H y - hLn = 2 Ú
i=0

f
n-1

2
v

n

2 i + 1
yn-2 i-1 h2 i+1

       < 2 h Ú
i=0

f
n-1

2
v

n

2 i + 1
yn-2 i-1

The expression 

                                  2 Ú
i=0

f
n-1

2
v

n

2 i + 1
yn-2 i-1 h2 i

was derived from expanding H y + hLn - H y - hLn with the help of the binomial theorem. The 

last inequality was derived from the assumption that h may be selected to be less than 1. 

Notice that B = 2 Ú
i=0

f
n-1

2
v

n

2 i + 1
yn-2 i-1 is just a number and h B < Ε for any Ε given a suffi-

ciently small h. Thus, yn - x < Ε as desired.    à

• Corollary: 

If a and b are positive real numbers and n is a positive integer, then

 Ha bL1�n = a1�n b1�n

Proof:

Let Α = a1�n and Β = b1�n. Then 

 a b = Αn Βn = HΑ ΒLn,

since multiplication is commutative. The uniqueness assertion of the theorem to which 

this is a corollary shows that 

Ha bL1�n = Α Β = a1�n b1�n.       à

One approach to describe the elements of  R is by using decimals. The following proposi-

tions give some insight. 

• Proposition:

Fix an integer p ³ 2 and let 8an< be any sequence of integers satisfying 0 £ an £ p - 1 for 

all n. Then, Ú
n=1

¥
an

pn converges to a number in @0, 1D. 

Proof:

Since an ³ 0, the partial sums Ú
n=1

N
an

pn  are nonnegative and increase with N . Thus, to show 

that the series converges to some number in @0, 1D, we just need to show that 1 is an 

upper bound for the sequence of partial sums. 

But this is easy:

     Ú
n=1

N
an

pn £ Ú
n=1

N
p-1

pn £ I p - 1M Ú
n=1

¥
1

pn = 1 à

Consequently, each x in @0, 1D can be so represented:

• Proposition:

Let p be an integer, p ³ 2, and let 0 £ x £ 1. Then there is a sequence of integers 8an< 

with 0 £ an £ p - 1 for all n such that x = Ú
n=1

¥
an

pn .

Proof:

Certainly the case x = 0 causes no real strain, so let us suppose that 0 < x £ 1. We will 

then construct 8an< by induction. 

Choose a1 to be the largest integer satisfying 
a1

p
< x. Since x > 0, it follows that a1 ³ 0; 

and since x £ 1, we have a1 < p. Because a1 is an integer, this means that a1 £ p - 1. Also, 

since a1 is largest, we must have

  
a1

p
< x £

a1+1
p

.

Next, choose a2 to be the largest integer satisfying 
a1

p
+

a2

p2
< x.

Check that 0 £ a2 £ p - 1 and that

        
a1

p
+

a2

p2
< x £

a1

p
+

a2 +1

p2
.

Thus, by induction we get a sequence of integers 8an< 
with 0 £ an £ p - 1 such that 

                  
a1

p
+ ... +

an

pn
< x £

a1

p
+ ... +

an +1

pn

Obviously, x = Ú
n=1

¥
an

pn . (Why??)    à 

Note: The series Ú
n=1

¥
an

pn  is called a base p (or p-adic) decimal expansion for x. It is some-

times written in the shorter form 

       x = 0. a1 a2 a3 ... Ibase pM .

It does not have to be unique (even for ordinary base 10 decimals: 0.5 = 0.4999 ...). One 

problem is that our construction is designed to produce nonterminating decimal expan-

sions. In the particular case where x =
a1

p
+ ... +

an +1

p
n =

q

pn , for some integer 0 < q £ pn, 

the construction will give us a repeating string of p - 1’s  in the decimal expansion for x 

since 
1

pn = Ú
k=n+1

¥
p-1

pk
. That is, any such x has two distinct base p decimal expansions: 

       x =
a1

p
+ ... +

an +1

p
n =

a1

p
+ ... +

an

p
n + Ú

k=n+1

¥
p-1

pk

Notice that if y Î R, for any n Î N we have y Î @n, n + 1D. In particular, there is some 

x Î @0, 1D such that y = n + x. By the work done above, this means that any real number y 

is an infinite sum of rational numbers.

Note: This is the end of our introductory discussion of the real line. The theorem below 

belongs to the complex realm and, since our focus on this course is on real numbers, this 

is the only theorem of complex variables that I will include in these notes (and I’m includ-

ing it because of its relevance).  

• Theorem (Cauchy-Schwarz inequality): 

If a1, ..., an and  b1, ..., bn are complex numbers, then 

      Ú
j=1

n

a j b j

2

£ Ú
j=1

n

¡a j¥
2 Ú

j=1

n

 b j¤
2

      

Proof:

Let A = â ¡a j¥
2
, B = â  b j¤

2
, and C = âa j b j. 

If B = 0, then b1 =. .. = bn = 0, and the conclusion is trivial. 

Therefore, assume B > 0. Then, 

0 £ â¡B a j - C b j¥
2

= âIB a j - C b jM IB a j - C b jM

     = B2 â ¡ a j ¥2 - B C âa j b j - B C Úa j b j +   C ¤2 â ¡ b j ¥2

     = B2 A - B   C ¤2 = BIA B -   C ¤2M

This implies that A B -   C ¤2 ³ 0, so A B ³   C ¤2. à
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• Proposition:

Let p be a prime number. Then there are no integers m, n Î Z such that I m

n
M2

= p. 

Proof:

Suppose that such a number does in fact exist. That is, suppose that there is a rational 

fraction 
m

n
 such that I m

n
M
2

= p . We can assume that this fraction is in simplest terms, i.e. 

gcdHm, nL = 1, since otherwise we could just divide by the common factor and get an 

equivalent fraction. 

Then the equation above can be written as m2 = n2 p, which means that p m2 (p divides 

m2). Thus, it follows that p m. In particular, there exists an integer k such that m = k p, 

from which it follows that

 m2 = k2 p2 = n2 p � k2 p = n2

But this means that p n2 and therefore that p n.  (ÞÜ)

This is a contradiction, because 1 = gcdHm, nL ³ p > 1. Thus, we conclude that no rational 

function x2 = p exists.       à             

Observation: 

Let p be a prime number,  and set A = 9r Î Q
+ : r2 < p= and B = 9r Î Q

+ : r2 > p=. Then for 

each r Î A there exists s Î A, such that r < s. Similarly, for each r Î B there exists s Î B, 

such that s < r. 

Let’s define this number s :

ð If  r Î A, then

        r2 < p� r < p = r + J p - rN

            = r + J p - rN ×
J p + rN

J p + rN

            = r +
p- r2

p +r

> r +
p- r2

p+r

we call this number s

> r

ð Similarly, if r Î B, we have

                      r2 > p� r > p = r - Jr - p N

                             = r - Jr - p N ×
Jr + p N

Jr + p N

                          = r -
r2- p

r+ p

< r -
r2- p

r+ p

we call this number s

< r

Then s Î Q
+. If r Î A, then r2 - p < 0, implying that r < s. On the other hand, if r Î B, 

then r2 - p > 0, implying that r > s. 

Note: The observation above suggests that any element in B Ì Q is an upper bound of A. 

In other words, if s Î B and r Î A, then r < s. 

Furthermore A has no smallest upper bound (in R):

For any s Î B, there is an s1 < s, with s1 Î B, such that s1 is an upper bound of A. Similar 

reasoning shows that B is bounded below by elements in A with no largest lower bound. 

We will soon examine this observation more closely. 

Definition: Let S be a set. An order on S is a relation, denoted by < , with the following 

two properties:

(i) If x, y Î S, then one and only one of the statements below is true :

x < y,       x = y,      y < x

(ii) Let x, y, z Î S. Then if x < y and y < z, it is always true that x < z. 

Definition: An ordered set is a set S in which an order k is defined. For example, Q is an 

ordered set if r < s is defined to mean that s - r is a positive rational number. 

Definition: Suppose S is an ordered set, and E Ì S. If there exists a Β Î S such that 

x £ Β for every x Î E, then we say that E is bounded above, and call Β an upper bound of 

E. Lower bounds are defined in the same way (with ³ in place of £). 

Definition: Suppose S is an ordered set, E Ì S, and E is bounded above. Moreover, 

suppose there exists an Α Î S with the following properties:

(i)  Α is an upper bound of E.

(ii) If Γ < Α, then Γ is not an upper bound of E.

Then Α is called the least upper bound or supremum of E, denoted Α = supHEL.

The greatest lower bound, or infimum, of a set E which is bounded below is defined in 

the same manner. The statement Α = infHEL means that Α is a lower bound of E and that 

no Β with Β > Α is a lower bound of E. 

Example:

a) Consider the sets A and B described above as subsets of the ordered set Q. The set A 

is bounded above. In fact, the upper bounds of A are exactly the members of B. Since B 

contains no smallest member, A has no least upper bound in Q. Similarly, B is bounded 

below: the set of all lower bounds of B consists of A and of all r Î Q with r £ 0. Since A 

has no largest member, B has no greatest lower bound in Q.    

b) If Α = supHEL exists, then Α may or may not be a member of E. For instance, let E1 be 

the set of all r Î Q with r < 0. Let E2 be the set of all r Î Q with r £ 0. Then 

supHE1L = supHE2L = 0  with 0 Ï E1 and 0 Î E2.     

c) Let E consist of all numbers 1 � n, where n = 1, 2, 3, ...

Then supHEL = 1, which is in E, and infHEL = 0, which is not in E.                Ù

Definition: An ordered set S is said to have the least upper bound property if the follow-

ing is true: If E Ì S is not empty, and E is bounded above, then supHEL exists in S.   ** 

Note: Observe that Q does not have the least upper bound property. **

We now show that every set S with the least upper bound property also has the greatest 

lower bound property. 

• Theorem:

Suppose S is an ordered set with the least upper bound property and let B Ì S  be 

nonempty and bounded below. In addition, let L be the set of all lower bounds of B. 

Then Α = supHLL exists in S  and Α = infHBL. In particular, infHBL exists in S.

Proof:

Since B is bounded below, L is nonempty. Since L consists of exactly those y Î S which 

satisfy the inequality y £ x  " x Î B, we see that every x Î B is an upper bound of L. 

Then L is bounded above.

Our hypothesis about S implies therefore that L has a supremum in S, call it Α. If Γ < Α, 

then Γ is not an upper bound of L. In particular, there is some Β Î L such that Γ < Β, 

implying that Γ is a lower bound of B. Thus Α £ x  " x Î B. It follows that Α Î L. If Α < Λ, 

then Λ Ï L, since Α is an upper bound of L.

Thus we have shown that Α Î L but Λ Ï L if Α < Λ. In other words, Α is a lower bound of 

B but Λ is not if Λ > Α. This implies that Α = infHBL.                 à

• Existence Theorem:

There exists an ordered field R which has the least upper bound property. Moreover, R 

contains Q as a subfield. 

Proof: (On Rudin’s, chapter 1 appendix)             à

We now derive some important properties of the field R.

• Axiom of Completeness: 

Every nonempty set of real numbers that is bounded above has a least upper bound. 

• Theorem:

a) If x, y Î R, and x > 0, then there is a positive integer n such that n x > y. 

b) If x, y Î R, and x < y, then there exists a p Î Q such that x < p < y. 

**Note: Part a) is usually referred to as the archimedian property of  R. Part b) may be 

stated by saying that  Q is dense in  R: Between any two real numbers there is a rational 

one. **

Proof:

a) Set A = 8n x : n Î N<. Now let’s assume that a) is false, so that y is an upper bound of A, 

and define Α = supHAL. We have that x > 0, which implies that Α - x < Α, and this in turn 

means that Α - x  is not an upper bound of A. 

Hence Α - x < m x  for some positive integer m. But then Α < Hm + 1L x Î A, which contra-

dicts the statement that Α = supHAL. (ÞÜ)

Therefore A is not bounded above.        ª

b) Since x < y, we have y - x > 0. From a), we conclude that there is an integer n > 0 

such that  nH y - xL > 1. Observe that, for some integer m, we have m - 1 £ n x < m. 

Observe also that m £ 1 + n x < n y. 

Thus, since n x < m, we have n x < m < n y. In particular, x <
m

n
< y. This proves b), with 

p =
m

n
.      ª        à

 

Now we are ready to prove the existence of nth roots of positive reals. 

• Theorem: 

For every real x > 0 and every integer n > 0, there is one and only one real y such that 

yn = x. 

Proof:

That there is at most one such y is clear, since if there was another y1, then we would 

have y < y1, which implies that yn < y1
n or y1 < y which implies that y1

n < yn.    

Let E be the set consisting of all positive real numbers t such that tn < x, i.e. 

E = 8t Î R
+ : tn < x<, with x Î R. We first need to show that E is not empty. 

If we let  t =
x

1+x
, then 0 £ t < 1. Hence tn £ t < x, which means that t Î E, thus E is not 

empty. 

If t > 1 + x, then tn ³ t > x, so that t Ï E. Thus 1 + x is an upper bound of E. 

Hence, the existence theorem implies that there exists an element y such that 

y = supHEL. 

We initially set out to prove that yn = x. To show that this is true, we must now show 

that the inequalities yn < x  and yn > x  yield a contradiction. 

The identity 

       bn - an = Hb - aL Ibn-1 + bn-2 a + bn-3 a2 + ... + an-1M 

yields the inequality 

       bn - an < Hb - aL Ibn-1 + bn-1 + ... + bn-1M = Hb - aL n bn-1.

So

      bn - an < Hb - aL n bn-1      

when 0 < a < b.  

We are now going to use this identity. 

Let b > a > 0 and set h = b - a. So 0 < h < 1 and 

                      h <
x- yn

nH y+1Ln-1

Put a = y, b = y + h. Then

                      H y + hLn - yn < h nH y + hLn-1 < h nH y + 1Ln-1 < x - yn. 

Thus H y + hLn < x, and y + h Î E. Since y + h > y, this contradicts the fact that y is an 

upper bound of E. 

Assume that yn > x and then set 

                    k =
yn-x

n yn-1

Clearly k > 0. Observe that n k =
yn-x

yn-1
<

yn

yn-1
= y. 

In particular, 0 < k < y. 

Thus, 

         yn - H y - kLn < k n yn-1 = yn - x . 

In particular, 

              x < H y - kLn. 

It follows that y - k is an upper bound of E. 

But y - k < y, which contradicts the fact that y is the least upper bound of E. 

Hence, yn = x , as we set out to prove.  à

(Alternate) Proof:

Let E be defined as before. Follow the argument of the proof above to show that E is not 

empty and bounded above. Then set y = supHEL. 

We will show that yn = x  by proving that yn - x < Ε  for any Ε > 0.  This will imply that 

yn - x = 0  or yn = x. 

Let h > 0. If h < y, then y - h is a positive number that is not an upper bound of E. In 

particular, there is some t Î E such that y - h < t < y and therefore 

            H y - hLn < tn < x .

Thus, y - h Î E. 

Observe now that H y + hLn > x, for if H y + hLn £ x, then J y +
h

2
N
n

< H y + hLn £ x implying that 

y +
h

2
Î E and contradicting the fact that y is an upper bound of E. 

It follows that H y - hLn < x < H y + hLn. Naturally, H y - hLn < yn < H y + hLn. 

         

Geometrically, the distance from yn to x, yn - x , is less than H y + hLn - H y - hLn. This can 

be proven analytically without much difficulty. 

Thus, 

yn - x < H y + hLn - H y - hLn = 2 Ú
i=0

f
n-1

2
v

n

2 i + 1
yn-2 i-1 h2 i+1

       < 2 h Ú
i=0

f
n-1

2
v

n

2 i + 1
yn-2 i-1

The expression 

                                  2 Ú
i=0

f
n-1

2
v

n

2 i + 1
yn-2 i-1 h2 i

was derived from expanding H y + hLn - H y - hLn with the help of the binomial theorem. The 

last inequality was derived from the assumption that h may be selected to be less than 1. 

Notice that B = 2 Ú
i=0

f
n-1

2
v

n

2 i + 1
yn-2 i-1 is just a number and h B < Ε for any Ε given a suffi-

ciently small h. Thus, yn - x < Ε as desired.    à

• Corollary: 

If a and b are positive real numbers and n is a positive integer, then

 Ha bL1�n = a1�n b1�n

Proof:

Let Α = a1�n and Β = b1�n. Then 

 a b = Αn Βn = HΑ ΒLn,

since multiplication is commutative. The uniqueness assertion of the theorem to which 

this is a corollary shows that 

Ha bL1�n = Α Β = a1�n b1�n.       à

One approach to describe the elements of  R is by using decimals. The following proposi-

tions give some insight. 

• Proposition:

Fix an integer p ³ 2 and let 8an< be any sequence of integers satisfying 0 £ an £ p - 1 for 

all n. Then, Ú
n=1

¥
an

pn converges to a number in @0, 1D. 

Proof:

Since an ³ 0, the partial sums Ú
n=1

N
an

pn  are nonnegative and increase with N . Thus, to show 

that the series converges to some number in @0, 1D, we just need to show that 1 is an 

upper bound for the sequence of partial sums. 

But this is easy:

     Ú
n=1

N
an

pn £ Ú
n=1

N
p-1

pn £ I p - 1M Ú
n=1

¥
1

pn = 1 à

Consequently, each x in @0, 1D can be so represented:

• Proposition:

Let p be an integer, p ³ 2, and let 0 £ x £ 1. Then there is a sequence of integers 8an< 

with 0 £ an £ p - 1 for all n such that x = Ú
n=1

¥
an

pn .

Proof:

Certainly the case x = 0 causes no real strain, so let us suppose that 0 < x £ 1. We will 

then construct 8an< by induction. 

Choose a1 to be the largest integer satisfying 
a1

p
< x. Since x > 0, it follows that a1 ³ 0; 

and since x £ 1, we have a1 < p. Because a1 is an integer, this means that a1 £ p - 1. Also, 

since a1 is largest, we must have

  
a1

p
< x £

a1+1
p

.

Next, choose a2 to be the largest integer satisfying 
a1

p
+

a2

p2
< x.

Check that 0 £ a2 £ p - 1 and that

        
a1

p
+

a2

p2
< x £

a1

p
+

a2 +1

p2
.

Thus, by induction we get a sequence of integers 8an< 
with 0 £ an £ p - 1 such that 

                  
a1

p
+ ... +

an

pn
< x £

a1

p
+ ... +

an +1

pn

Obviously, x = Ú
n=1

¥
an

pn . (Why??)    à 

Note: The series Ú
n=1

¥
an

pn  is called a base p (or p-adic) decimal expansion for x. It is some-

times written in the shorter form 

       x = 0. a1 a2 a3 ... Ibase pM .

It does not have to be unique (even for ordinary base 10 decimals: 0.5 = 0.4999 ...). One 

problem is that our construction is designed to produce nonterminating decimal expan-

sions. In the particular case where x =
a1

p
+ ... +

an +1

p
n =

q

pn , for some integer 0 < q £ pn, 

the construction will give us a repeating string of p - 1’s  in the decimal expansion for x 

since 
1

pn = Ú
k=n+1

¥
p-1

pk
. That is, any such x has two distinct base p decimal expansions: 

       x =
a1

p
+ ... +

an +1

p
n =

a1

p
+ ... +

an

p
n + Ú

k=n+1

¥
p-1

pk

Notice that if y Î R, for any n Î N we have y Î @n, n + 1D. In particular, there is some 

x Î @0, 1D such that y = n + x. By the work done above, this means that any real number y 

is an infinite sum of rational numbers.

Note: This is the end of our introductory discussion of the real line. The theorem below 

belongs to the complex realm and, since our focus on this course is on real numbers, this 

is the only theorem of complex variables that I will include in these notes (and I’m includ-

ing it because of its relevance).  

• Theorem (Cauchy-Schwarz inequality): 

If a1, ..., an and  b1, ..., bn are complex numbers, then 

      Ú
j=1

n

a j b j

2

£ Ú
j=1

n

¡a j¥
2 Ú

j=1

n

 b j¤
2

      

Proof:

Let A = â ¡a j¥
2
, B = â  b j¤

2
, and C = âa j b j. 

If B = 0, then b1 =. .. = bn = 0, and the conclusion is trivial. 

Therefore, assume B > 0. Then, 

0 £ â¡B a j - C b j¥
2

= âIB a j - C b jM IB a j - C b jM

     = B2 â ¡ a j ¥2 - B C âa j b j - B C Úa j b j +   C ¤2 â ¡ b j ¥2

     = B2 A - B   C ¤2 = BIA B -   C ¤2M

This implies that A B -   C ¤2 ³ 0, so A B ³   C ¤2. à
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• Proposition:

Let p be a prime number. Then there are no integers m, n Î Z such that I m

n
M2

= p. 

Proof:

Suppose that such a number does in fact exist. That is, suppose that there is a rational 

fraction 
m

n
 such that I m

n
M
2

= p . We can assume that this fraction is in simplest terms, i.e. 

gcdHm, nL = 1, since otherwise we could just divide by the common factor and get an 

equivalent fraction. 

Then the equation above can be written as m2 = n2 p, which means that p m2 (p divides 

m2). Thus, it follows that p m. In particular, there exists an integer k such that m = k p, 

from which it follows that

 m2 = k2 p2 = n2 p � k2 p = n2

But this means that p n2 and therefore that p n.  (ÞÜ)

This is a contradiction, because 1 = gcdHm, nL ³ p > 1. Thus, we conclude that no rational 

function x2 = p exists.       à             

Observation: 

Let p be a prime number,  and set A = 9r Î Q
+ : r2 < p= and B = 9r Î Q

+ : r2 > p=. Then for 

each r Î A there exists s Î A, such that r < s. Similarly, for each r Î B there exists s Î B, 

such that s < r. 

Let’s define this number s :

ð If  r Î A, then

        r2 < p� r < p = r + J p - rN

            = r + J p - rN ×
J p + rN

J p + rN

            = r +
p- r2

p +r

> r +
p- r2

p+r

we call this number s

> r

ð Similarly, if r Î B, we have

                      r2 > p� r > p = r - Jr - p N

                             = r - Jr - p N ×
Jr + p N

Jr + p N

                          = r -
r2- p

r+ p

< r -
r2- p

r+ p

we call this number s

< r

Then s Î Q
+. If r Î A, then r2 - p < 0, implying that r < s. On the other hand, if r Î B, 

then r2 - p > 0, implying that r > s. 

Note: The observation above suggests that any element in B Ì Q is an upper bound of A. 

In other words, if s Î B and r Î A, then r < s. 

Furthermore A has no smallest upper bound (in R):

For any s Î B, there is an s1 < s, with s1 Î B, such that s1 is an upper bound of A. Similar 

reasoning shows that B is bounded below by elements in A with no largest lower bound. 

We will soon examine this observation more closely. 

Definition: Let S be a set. An order on S is a relation, denoted by < , with the following 

two properties:

(i) If x, y Î S, then one and only one of the statements below is true :

x < y,       x = y,      y < x

(ii) Let x, y, z Î S. Then if x < y and y < z, it is always true that x < z. 

Definition: An ordered set is a set S in which an order k is defined. For example, Q is an 

ordered set if r < s is defined to mean that s - r is a positive rational number. 

Definition: Suppose S is an ordered set, and E Ì S. If there exists a Β Î S such that 

x £ Β for every x Î E, then we say that E is bounded above, and call Β an upper bound of 

E. Lower bounds are defined in the same way (with ³ in place of £). 

Definition: Suppose S is an ordered set, E Ì S, and E is bounded above. Moreover, 

suppose there exists an Α Î S with the following properties:

(i)  Α is an upper bound of E.

(ii) If Γ < Α, then Γ is not an upper bound of E.

Then Α is called the least upper bound or supremum of E, denoted Α = supHEL.

The greatest lower bound, or infimum, of a set E which is bounded below is defined in 

the same manner. The statement Α = infHEL means that Α is a lower bound of E and that 

no Β with Β > Α is a lower bound of E. 

Example:

a) Consider the sets A and B described above as subsets of the ordered set Q. The set A 

is bounded above. In fact, the upper bounds of A are exactly the members of B. Since B 

contains no smallest member, A has no least upper bound in Q. Similarly, B is bounded 

below: the set of all lower bounds of B consists of A and of all r Î Q with r £ 0. Since A 

has no largest member, B has no greatest lower bound in Q.    

b) If Α = supHEL exists, then Α may or may not be a member of E. For instance, let E1 be 

the set of all r Î Q with r < 0. Let E2 be the set of all r Î Q with r £ 0. Then 

supHE1L = supHE2L = 0  with 0 Ï E1 and 0 Î E2.     

c) Let E consist of all numbers 1 � n, where n = 1, 2, 3, ...

Then supHEL = 1, which is in E, and infHEL = 0, which is not in E.                Ù

Definition: An ordered set S is said to have the least upper bound property if the follow-

ing is true: If E Ì S is not empty, and E is bounded above, then supHEL exists in S.   ** 

Note: Observe that Q does not have the least upper bound property. **

We now show that every set S with the least upper bound property also has the greatest 

lower bound property. 

• Theorem:

Suppose S is an ordered set with the least upper bound property and let B Ì S  be 

nonempty and bounded below. In addition, let L be the set of all lower bounds of B. 

Then Α = supHLL exists in S  and Α = infHBL. In particular, infHBL exists in S.

Proof:

Since B is bounded below, L is nonempty. Since L consists of exactly those y Î S which 

satisfy the inequality y £ x  " x Î B, we see that every x Î B is an upper bound of L. 

Then L is bounded above.

Our hypothesis about S implies therefore that L has a supremum in S, call it Α. If Γ < Α, 

then Γ is not an upper bound of L. In particular, there is some Β Î L such that Γ < Β, 

implying that Γ is a lower bound of B. Thus Α £ x  " x Î B. It follows that Α Î L. If Α < Λ, 

then Λ Ï L, since Α is an upper bound of L.

Thus we have shown that Α Î L but Λ Ï L if Α < Λ. In other words, Α is a lower bound of 

B but Λ is not if Λ > Α. This implies that Α = infHBL.                 à

• Existence Theorem:

There exists an ordered field R which has the least upper bound property. Moreover, R 

contains Q as a subfield. 

Proof: (On Rudin’s, chapter 1 appendix)             à

We now derive some important properties of the field R.

• Axiom of Completeness: 

Every nonempty set of real numbers that is bounded above has a least upper bound. 

• Theorem:

a) If x, y Î R, and x > 0, then there is a positive integer n such that n x > y. 

b) If x, y Î R, and x < y, then there exists a p Î Q such that x < p < y. 

**Note: Part a) is usually referred to as the archimedian property of  R. Part b) may be 

stated by saying that  Q is dense in  R: Between any two real numbers there is a rational 

one. **

Proof:

a) Set A = 8n x : n Î N<. Now let’s assume that a) is false, so that y is an upper bound of A, 

and define Α = supHAL. We have that x > 0, which implies that Α - x < Α, and this in turn 

means that Α - x  is not an upper bound of A. 

Hence Α - x < m x  for some positive integer m. But then Α < Hm + 1L x Î A, which contra-

dicts the statement that Α = supHAL. (ÞÜ)

Therefore A is not bounded above.        ª

b) Since x < y, we have y - x > 0. From a), we conclude that there is an integer n > 0 

such that  nH y - xL > 1. Observe that, for some integer m, we have m - 1 £ n x < m. 

Observe also that m £ 1 + n x < n y. 

Thus, since n x < m, we have n x < m < n y. In particular, x <
m

n
< y. This proves b), with 

p =
m

n
.      ª        à

 

Now we are ready to prove the existence of nth roots of positive reals. 

• Theorem: 

For every real x > 0 and every integer n > 0, there is one and only one real y such that 

yn = x. 

Proof:

That there is at most one such y is clear, since if there was another y1, then we would 

have y < y1, which implies that yn < y1
n or y1 < y which implies that y1

n < yn.    

Let E be the set consisting of all positive real numbers t such that tn < x, i.e. 

E = 8t Î R
+ : tn < x<, with x Î R. We first need to show that E is not empty. 

If we let  t =
x

1+x
, then 0 £ t < 1. Hence tn £ t < x, which means that t Î E, thus E is not 

empty. 

If t > 1 + x, then tn ³ t > x, so that t Ï E. Thus 1 + x is an upper bound of E. 

Hence, the existence theorem implies that there exists an element y such that 

y = supHEL. 

We initially set out to prove that yn = x. To show that this is true, we must now show 

that the inequalities yn < x  and yn > x  yield a contradiction. 

The identity 

       bn - an = Hb - aL Ibn-1 + bn-2 a + bn-3 a2 + ... + an-1M 

yields the inequality 

       bn - an < Hb - aL Ibn-1 + bn-1 + ... + bn-1M = Hb - aL n bn-1.

So

      bn - an < Hb - aL n bn-1      

when 0 < a < b.  

We are now going to use this identity. 

Let b > a > 0 and set h = b - a. So 0 < h < 1 and 

                      h <
x- yn

nH y+1Ln-1

Put a = y, b = y + h. Then

                      H y + hLn - yn < h nH y + hLn-1 < h nH y + 1Ln-1 < x - yn. 

Thus H y + hLn < x, and y + h Î E. Since y + h > y, this contradicts the fact that y is an 

upper bound of E. 

Assume that yn > x and then set 

                    k =
yn-x

n yn-1

Clearly k > 0. Observe that n k =
yn-x

yn-1
<

yn

yn-1
= y. 

In particular, 0 < k < y. 

Thus, 

         yn - H y - kLn < k n yn-1 = yn - x . 

In particular, 

              x < H y - kLn. 

It follows that y - k is an upper bound of E. 

But y - k < y, which contradicts the fact that y is the least upper bound of E. 

Hence, yn = x , as we set out to prove.  à

(Alternate) Proof:

Let E be defined as before. Follow the argument of the proof above to show that E is not 

empty and bounded above. Then set y = supHEL. 

We will show that yn = x  by proving that yn - x < Ε  for any Ε > 0.  This will imply that 

yn - x = 0  or yn = x. 

Let h > 0. If h < y, then y - h is a positive number that is not an upper bound of E. In 

particular, there is some t Î E such that y - h < t < y and therefore 

            H y - hLn < tn < x .

Thus, y - h Î E. 

Observe now that H y + hLn > x, for if H y + hLn £ x, then J y +
h

2
N
n

< H y + hLn £ x implying that 

y +
h

2
Î E and contradicting the fact that y is an upper bound of E. 

It follows that H y - hLn < x < H y + hLn. Naturally, H y - hLn < yn < H y + hLn. 

         

Geometrically, the distance from yn to x, yn - x , is less than H y + hLn - H y - hLn. This can 

be proven analytically without much difficulty. 

Thus, 

yn - x < H y + hLn - H y - hLn = 2 Ú
i=0

f
n-1

2
v

n

2 i + 1
yn-2 i-1 h2 i+1

       < 2 h Ú
i=0

f
n-1

2
v

n

2 i + 1
yn-2 i-1

The expression 

                                  2 Ú
i=0

f
n-1

2
v

n

2 i + 1
yn-2 i-1 h2 i

was derived from expanding H y + hLn - H y - hLn with the help of the binomial theorem. The 

last inequality was derived from the assumption that h may be selected to be less than 1. 

Notice that B = 2 Ú
i=0

f
n-1

2
v

n

2 i + 1
yn-2 i-1 is just a number and h B < Ε for any Ε given a suffi-

ciently small h. Thus, yn - x < Ε as desired.    à

• Corollary: 

If a and b are positive real numbers and n is a positive integer, then

 Ha bL1�n = a1�n b1�n

Proof:

Let Α = a1�n and Β = b1�n. Then 

 a b = Αn Βn = HΑ ΒLn,

since multiplication is commutative. The uniqueness assertion of the theorem to which 

this is a corollary shows that 

Ha bL1�n = Α Β = a1�n b1�n.       à

One approach to describe the elements of  R is by using decimals. The following proposi-

tions give some insight. 

• Proposition:

Fix an integer p ³ 2 and let 8an< be any sequence of integers satisfying 0 £ an £ p - 1 for 

all n. Then, Ú
n=1

¥
an

pn converges to a number in @0, 1D. 

Proof:

Since an ³ 0, the partial sums Ú
n=1

N
an

pn  are nonnegative and increase with N . Thus, to show 

that the series converges to some number in @0, 1D, we just need to show that 1 is an 

upper bound for the sequence of partial sums. 

But this is easy:

     Ú
n=1

N
an

pn £ Ú
n=1

N
p-1

pn £ I p - 1M Ú
n=1

¥
1

pn = 1 à

Consequently, each x in @0, 1D can be so represented:

• Proposition:

Let p be an integer, p ³ 2, and let 0 £ x £ 1. Then there is a sequence of integers 8an< 

with 0 £ an £ p - 1 for all n such that x = Ú
n=1

¥
an

pn .

Proof:

Certainly the case x = 0 causes no real strain, so let us suppose that 0 < x £ 1. We will 

then construct 8an< by induction. 

Choose a1 to be the largest integer satisfying 
a1

p
< x. Since x > 0, it follows that a1 ³ 0; 

and since x £ 1, we have a1 < p. Because a1 is an integer, this means that a1 £ p - 1. Also, 

since a1 is largest, we must have

  
a1

p
< x £

a1+1
p

.

Next, choose a2 to be the largest integer satisfying 
a1

p
+

a2

p2
< x.

Check that 0 £ a2 £ p - 1 and that

        
a1

p
+

a2

p2
< x £

a1

p
+

a2 +1

p2
.

Thus, by induction we get a sequence of integers 8an< 
with 0 £ an £ p - 1 such that 

                  
a1

p
+ ... +

an

pn
< x £

a1

p
+ ... +

an +1

pn

Obviously, x = Ú
n=1

¥
an

pn . (Why??)    à 

Note: The series Ú
n=1

¥
an

pn  is called a base p (or p-adic) decimal expansion for x. It is some-

times written in the shorter form 

       x = 0. a1 a2 a3 ... Ibase pM .

It does not have to be unique (even for ordinary base 10 decimals: 0.5 = 0.4999 ...). One 

problem is that our construction is designed to produce nonterminating decimal expan-

sions. In the particular case where x =
a1

p
+ ... +

an +1

p
n =

q

pn , for some integer 0 < q £ pn, 

the construction will give us a repeating string of p - 1’s  in the decimal expansion for x 

since 
1

pn = Ú
k=n+1

¥
p-1

pk
. That is, any such x has two distinct base p decimal expansions: 

       x =
a1

p
+ ... +

an +1

p
n =

a1

p
+ ... +

an

p
n + Ú

k=n+1

¥
p-1

pk

Notice that if y Î R, for any n Î N we have y Î @n, n + 1D. In particular, there is some 

x Î @0, 1D such that y = n + x. By the work done above, this means that any real number y 

is an infinite sum of rational numbers.

Note: This is the end of our introductory discussion of the real line. The theorem below 

belongs to the complex realm and, since our focus on this course is on real numbers, this 

is the only theorem of complex variables that I will include in these notes (and I’m includ-

ing it because of its relevance).  

• Theorem (Cauchy-Schwarz inequality): 

If a1, ..., an and  b1, ..., bn are complex numbers, then 

      Ú
j=1

n

a j b j

2

£ Ú
j=1

n

¡a j¥
2 Ú

j=1

n

 b j¤
2

      

Proof:

Let A = â ¡a j¥
2
, B = â  b j¤

2
, and C = âa j b j. 

If B = 0, then b1 =. .. = bn = 0, and the conclusion is trivial. 

Therefore, assume B > 0. Then, 

0 £ â¡B a j - C b j¥
2

= âIB a j - C b jM IB a j - C b jM

     = B2 â ¡ a j ¥2 - B C âa j b j - B C Úa j b j +   C ¤2 â ¡ b j ¥2

     = B2 A - B   C ¤2 = BIA B -   C ¤2M

This implies that A B -   C ¤2 ³ 0, so A B ³   C ¤2. à
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• Proposition:

Let p be a prime number. Then there are no integers m, n Î Z such that I m

n
M2

= p. 

Proof:

Suppose that such a number does in fact exist. That is, suppose that there is a rational 

fraction 
m

n
 such that I m

n
M
2

= p . We can assume that this fraction is in simplest terms, i.e. 

gcdHm, nL = 1, since otherwise we could just divide by the common factor and get an 

equivalent fraction. 

Then the equation above can be written as m2 = n2 p, which means that p m2 (p divides 

m2). Thus, it follows that p m. In particular, there exists an integer k such that m = k p, 

from which it follows that

 m2 = k2 p2 = n2 p � k2 p = n2

But this means that p n2 and therefore that p n.  (ÞÜ)

This is a contradiction, because 1 = gcdHm, nL ³ p > 1. Thus, we conclude that no rational 

function x2 = p exists.       à             

Observation: 

Let p be a prime number,  and set A = 9r Î Q
+ : r2 < p= and B = 9r Î Q

+ : r2 > p=. Then for 

each r Î A there exists s Î A, such that r < s. Similarly, for each r Î B there exists s Î B, 

such that s < r. 

Let’s define this number s :

ð If  r Î A, then

        r2 < p� r < p = r + J p - rN

            = r + J p - rN ×
J p + rN

J p + rN

            = r +
p- r2

p +r

> r +
p- r2

p+r

we call this number s

> r

ð Similarly, if r Î B, we have

                      r2 > p� r > p = r - Jr - p N

                             = r - Jr - p N ×
Jr + p N

Jr + p N

                          = r -
r2- p

r+ p

< r -
r2- p

r+ p

we call this number s

< r

Then s Î Q
+. If r Î A, then r2 - p < 0, implying that r < s. On the other hand, if r Î B, 

then r2 - p > 0, implying that r > s. 

Note: The observation above suggests that any element in B Ì Q is an upper bound of A. 

In other words, if s Î B and r Î A, then r < s. 

Furthermore A has no smallest upper bound (in R):

For any s Î B, there is an s1 < s, with s1 Î B, such that s1 is an upper bound of A. Similar 

reasoning shows that B is bounded below by elements in A with no largest lower bound. 

We will soon examine this observation more closely. 

Definition: Let S be a set. An order on S is a relation, denoted by < , with the following 

two properties:

(i) If x, y Î S, then one and only one of the statements below is true :

x < y,       x = y,      y < x

(ii) Let x, y, z Î S. Then if x < y and y < z, it is always true that x < z. 

Definition: An ordered set is a set S in which an order k is defined. For example, Q is an 

ordered set if r < s is defined to mean that s - r is a positive rational number. 

Definition: Suppose S is an ordered set, and E Ì S. If there exists a Β Î S such that 

x £ Β for every x Î E, then we say that E is bounded above, and call Β an upper bound of 

E. Lower bounds are defined in the same way (with ³ in place of £). 

Definition: Suppose S is an ordered set, E Ì S, and E is bounded above. Moreover, 

suppose there exists an Α Î S with the following properties:

(i)  Α is an upper bound of E.

(ii) If Γ < Α, then Γ is not an upper bound of E.

Then Α is called the least upper bound or supremum of E, denoted Α = supHEL.

The greatest lower bound, or infimum, of a set E which is bounded below is defined in 

the same manner. The statement Α = infHEL means that Α is a lower bound of E and that 

no Β with Β > Α is a lower bound of E. 

Example:

a) Consider the sets A and B described above as subsets of the ordered set Q. The set A 

is bounded above. In fact, the upper bounds of A are exactly the members of B. Since B 

contains no smallest member, A has no least upper bound in Q. Similarly, B is bounded 

below: the set of all lower bounds of B consists of A and of all r Î Q with r £ 0. Since A 

has no largest member, B has no greatest lower bound in Q.    

b) If Α = supHEL exists, then Α may or may not be a member of E. For instance, let E1 be 

the set of all r Î Q with r < 0. Let E2 be the set of all r Î Q with r £ 0. Then 

supHE1L = supHE2L = 0  with 0 Ï E1 and 0 Î E2.     

c) Let E consist of all numbers 1 � n, where n = 1, 2, 3, ...

Then supHEL = 1, which is in E, and infHEL = 0, which is not in E.                Ù

Definition: An ordered set S is said to have the least upper bound property if the follow-

ing is true: If E Ì S is not empty, and E is bounded above, then supHEL exists in S.   ** 

Note: Observe that Q does not have the least upper bound property. **

We now show that every set S with the least upper bound property also has the greatest 

lower bound property. 

• Theorem:

Suppose S is an ordered set with the least upper bound property and let B Ì S  be 

nonempty and bounded below. In addition, let L be the set of all lower bounds of B. 

Then Α = supHLL exists in S  and Α = infHBL. In particular, infHBL exists in S.

Proof:

Since B is bounded below, L is nonempty. Since L consists of exactly those y Î S which 

satisfy the inequality y £ x  " x Î B, we see that every x Î B is an upper bound of L. 

Then L is bounded above.

Our hypothesis about S implies therefore that L has a supremum in S, call it Α. If Γ < Α, 

then Γ is not an upper bound of L. In particular, there is some Β Î L such that Γ < Β, 

implying that Γ is a lower bound of B. Thus Α £ x  " x Î B. It follows that Α Î L. If Α < Λ, 

then Λ Ï L, since Α is an upper bound of L.

Thus we have shown that Α Î L but Λ Ï L if Α < Λ. In other words, Α is a lower bound of 

B but Λ is not if Λ > Α. This implies that Α = infHBL.                 à

• Existence Theorem:

There exists an ordered field R which has the least upper bound property. Moreover, R 

contains Q as a subfield. 

Proof: (On Rudin’s, chapter 1 appendix)             à

We now derive some important properties of the field R.

• Axiom of Completeness: 

Every nonempty set of real numbers that is bounded above has a least upper bound. 

• Theorem:

a) If x, y Î R, and x > 0, then there is a positive integer n such that n x > y. 

b) If x, y Î R, and x < y, then there exists a p Î Q such that x < p < y. 

**Note: Part a) is usually referred to as the archimedian property of  R. Part b) may be 

stated by saying that  Q is dense in  R: Between any two real numbers there is a rational 

one. **

Proof:

a) Set A = 8n x : n Î N<. Now let’s assume that a) is false, so that y is an upper bound of A, 

and define Α = supHAL. We have that x > 0, which implies that Α - x < Α, and this in turn 

means that Α - x  is not an upper bound of A. 

Hence Α - x < m x  for some positive integer m. But then Α < Hm + 1L x Î A, which contra-

dicts the statement that Α = supHAL. (ÞÜ)

Therefore A is not bounded above.        ª

b) Since x < y, we have y - x > 0. From a), we conclude that there is an integer n > 0 

such that  nH y - xL > 1. Observe that, for some integer m, we have m - 1 £ n x < m. 

Observe also that m £ 1 + n x < n y. 

Thus, since n x < m, we have n x < m < n y. In particular, x <
m

n
< y. This proves b), with 

p =
m

n
.      ª        à

 

Now we are ready to prove the existence of nth roots of positive reals. 

• Theorem: 

For every real x > 0 and every integer n > 0, there is one and only one real y such that 

yn = x. 

Proof:

That there is at most one such y is clear, since if there was another y1, then we would 

have y < y1, which implies that yn < y1
n or y1 < y which implies that y1

n < yn.    

Let E be the set consisting of all positive real numbers t such that tn < x, i.e. 

E = 8t Î R
+ : tn < x<, with x Î R. We first need to show that E is not empty. 

If we let  t =
x

1+x
, then 0 £ t < 1. Hence tn £ t < x, which means that t Î E, thus E is not 

empty. 

If t > 1 + x, then tn ³ t > x, so that t Ï E. Thus 1 + x is an upper bound of E. 

Hence, the existence theorem implies that there exists an element y such that 

y = supHEL. 

We initially set out to prove that yn = x. To show that this is true, we must now show 

that the inequalities yn < x  and yn > x  yield a contradiction. 

The identity 

       bn - an = Hb - aL Ibn-1 + bn-2 a + bn-3 a2 + ... + an-1M 

yields the inequality 

       bn - an < Hb - aL Ibn-1 + bn-1 + ... + bn-1M = Hb - aL n bn-1.

So

      bn - an < Hb - aL n bn-1      

when 0 < a < b.  

We are now going to use this identity. 

Let b > a > 0 and set h = b - a. So 0 < h < 1 and 

                      h <
x- yn

nH y+1Ln-1

Put a = y, b = y + h. Then

                      H y + hLn - yn < h nH y + hLn-1 < h nH y + 1Ln-1 < x - yn. 

Thus H y + hLn < x, and y + h Î E. Since y + h > y, this contradicts the fact that y is an 

upper bound of E. 

Assume that yn > x and then set 

                    k =
yn-x

n yn-1

Clearly k > 0. Observe that n k =
yn-x

yn-1
<

yn

yn-1
= y. 

In particular, 0 < k < y. 

Thus, 

         yn - H y - kLn < k n yn-1 = yn - x . 

In particular, 

              x < H y - kLn. 

It follows that y - k is an upper bound of E. 

But y - k < y, which contradicts the fact that y is the least upper bound of E. 

Hence, yn = x , as we set out to prove.  à

(Alternate) Proof:

Let E be defined as before. Follow the argument of the proof above to show that E is not 

empty and bounded above. Then set y = supHEL. 

We will show that yn = x  by proving that yn - x < Ε  for any Ε > 0.  This will imply that 

yn - x = 0  or yn = x. 

Let h > 0. If h < y, then y - h is a positive number that is not an upper bound of E. In 

particular, there is some t Î E such that y - h < t < y and therefore 

            H y - hLn < tn < x .

Thus, y - h Î E. 

Observe now that H y + hLn > x, for if H y + hLn £ x, then J y +
h

2
N
n

< H y + hLn £ x implying that 

y +
h

2
Î E and contradicting the fact that y is an upper bound of E. 

It follows that H y - hLn < x < H y + hLn. Naturally, H y - hLn < yn < H y + hLn. 

         

Geometrically, the distance from yn to x, yn - x , is less than H y + hLn - H y - hLn. This can 

be proven analytically without much difficulty. 

Thus, 

yn - x < H y + hLn - H y - hLn = 2 Ú
i=0

f
n-1

2
v

n

2 i + 1
yn-2 i-1 h2 i+1

       < 2 h Ú
i=0

f
n-1

2
v

n

2 i + 1
yn-2 i-1

The expression 

                                  2 Ú
i=0

f
n-1

2
v

n

2 i + 1
yn-2 i-1 h2 i

was derived from expanding H y + hLn - H y - hLn with the help of the binomial theorem. The 

last inequality was derived from the assumption that h may be selected to be less than 1. 

Notice that B = 2 Ú
i=0

f
n-1

2
v

n

2 i + 1
yn-2 i-1 is just a number and h B < Ε for any Ε given a suffi-

ciently small h. Thus, yn - x < Ε as desired.    à

• Corollary: 

If a and b are positive real numbers and n is a positive integer, then

 Ha bL1�n = a1�n b1�n

Proof:

Let Α = a1�n and Β = b1�n. Then 

 a b = Αn Βn = HΑ ΒLn,

since multiplication is commutative. The uniqueness assertion of the theorem to which 

this is a corollary shows that 

Ha bL1�n = Α Β = a1�n b1�n.       à

One approach to describe the elements of  R is by using decimals. The following proposi-

tions give some insight. 

• Proposition:

Fix an integer p ³ 2 and let 8an< be any sequence of integers satisfying 0 £ an £ p - 1 for 

all n. Then, Ú
n=1

¥
an

pn converges to a number in @0, 1D. 

Proof:

Since an ³ 0, the partial sums Ú
n=1

N
an

pn  are nonnegative and increase with N . Thus, to show 

that the series converges to some number in @0, 1D, we just need to show that 1 is an 

upper bound for the sequence of partial sums. 

But this is easy:

     Ú
n=1

N
an

pn £ Ú
n=1

N
p-1

pn £ I p - 1M Ú
n=1

¥
1

pn = 1 à

Consequently, each x in @0, 1D can be so represented:

• Proposition:

Let p be an integer, p ³ 2, and let 0 £ x £ 1. Then there is a sequence of integers 8an< 

with 0 £ an £ p - 1 for all n such that x = Ú
n=1

¥
an

pn .

Proof:

Certainly the case x = 0 causes no real strain, so let us suppose that 0 < x £ 1. We will 

then construct 8an< by induction. 

Choose a1 to be the largest integer satisfying 
a1

p
< x. Since x > 0, it follows that a1 ³ 0; 

and since x £ 1, we have a1 < p. Because a1 is an integer, this means that a1 £ p - 1. Also, 

since a1 is largest, we must have

  
a1

p
< x £

a1+1
p

.

Next, choose a2 to be the largest integer satisfying 
a1

p
+

a2

p2
< x.

Check that 0 £ a2 £ p - 1 and that

        
a1

p
+

a2

p2
< x £

a1

p
+

a2 +1

p2
.

Thus, by induction we get a sequence of integers 8an< 
with 0 £ an £ p - 1 such that 

                  
a1

p
+ ... +

an

pn
< x £

a1

p
+ ... +

an +1

pn

Obviously, x = Ú
n=1

¥
an

pn . (Why??)    à 

Note: The series Ú
n=1

¥
an

pn  is called a base p (or p-adic) decimal expansion for x. It is some-

times written in the shorter form 

       x = 0. a1 a2 a3 ... Ibase pM .

It does not have to be unique (even for ordinary base 10 decimals: 0.5 = 0.4999 ...). One 

problem is that our construction is designed to produce nonterminating decimal expan-

sions. In the particular case where x =
a1

p
+ ... +

an +1

p
n =

q

pn , for some integer 0 < q £ pn, 

the construction will give us a repeating string of p - 1’s  in the decimal expansion for x 

since 
1

pn = Ú
k=n+1

¥
p-1

pk
. That is, any such x has two distinct base p decimal expansions: 

       x =
a1

p
+ ... +

an +1

p
n =

a1

p
+ ... +

an

p
n + Ú

k=n+1

¥
p-1

pk

Notice that if y Î R, for any n Î N we have y Î @n, n + 1D. In particular, there is some 

x Î @0, 1D such that y = n + x. By the work done above, this means that any real number y 

is an infinite sum of rational numbers.

Note: This is the end of our introductory discussion of the real line. The theorem below 

belongs to the complex realm and, since our focus on this course is on real numbers, this 

is the only theorem of complex variables that I will include in these notes (and I’m includ-

ing it because of its relevance).  

• Theorem (Cauchy-Schwarz inequality): 

If a1, ..., an and  b1, ..., bn are complex numbers, then 

      Ú
j=1

n

a j b j

2

£ Ú
j=1

n

¡a j¥
2 Ú

j=1

n

 b j¤
2

      

Proof:

Let A = â ¡a j¥
2
, B = â  b j¤

2
, and C = âa j b j. 

If B = 0, then b1 =. .. = bn = 0, and the conclusion is trivial. 

Therefore, assume B > 0. Then, 

0 £ â¡B a j - C b j¥
2

= âIB a j - C b jM IB a j - C b jM

     = B2 â ¡ a j ¥2 - B C âa j b j - B C Úa j b j +   C ¤2 â ¡ b j ¥2

     = B2 A - B   C ¤2 = BIA B -   C ¤2M

This implies that A B -   C ¤2 ³ 0, so A B ³   C ¤2. à
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• Proposition:

Let p be a prime number. Then there are no integers m, n Î Z such that I m

n
M2

= p. 

Proof:

Suppose that such a number does in fact exist. That is, suppose that there is a rational 

fraction 
m

n
 such that I m

n
M
2

= p . We can assume that this fraction is in simplest terms, i.e. 

gcdHm, nL = 1, since otherwise we could just divide by the common factor and get an 

equivalent fraction. 

Then the equation above can be written as m2 = n2 p, which means that p m2 (p divides 

m2). Thus, it follows that p m. In particular, there exists an integer k such that m = k p, 

from which it follows that

 m2 = k2 p2 = n2 p � k2 p = n2

But this means that p n2 and therefore that p n.  (ÞÜ)

This is a contradiction, because 1 = gcdHm, nL ³ p > 1. Thus, we conclude that no rational 

function x2 = p exists.       à             

Observation: 

Let p be a prime number,  and set A = 9r Î Q
+ : r2 < p= and B = 9r Î Q

+ : r2 > p=. Then for 

each r Î A there exists s Î A, such that r < s. Similarly, for each r Î B there exists s Î B, 

such that s < r. 

Let’s define this number s :

ð If  r Î A, then

        r2 < p� r < p = r + J p - rN

            = r + J p - rN ×
J p + rN

J p + rN

            = r +
p- r2

p +r

> r +
p- r2

p+r

we call this number s

> r

ð Similarly, if r Î B, we have

                      r2 > p� r > p = r - Jr - p N

                             = r - Jr - p N ×
Jr + p N

Jr + p N

                          = r -
r2- p

r+ p

< r -
r2- p

r+ p

we call this number s

< r

Then s Î Q
+. If r Î A, then r2 - p < 0, implying that r < s. On the other hand, if r Î B, 

then r2 - p > 0, implying that r > s. 

Note: The observation above suggests that any element in B Ì Q is an upper bound of A. 

In other words, if s Î B and r Î A, then r < s. 

Furthermore A has no smallest upper bound (in R):

For any s Î B, there is an s1 < s, with s1 Î B, such that s1 is an upper bound of A. Similar 

reasoning shows that B is bounded below by elements in A with no largest lower bound. 

We will soon examine this observation more closely. 

Definition: Let S be a set. An order on S is a relation, denoted by < , with the following 

two properties:

(i) If x, y Î S, then one and only one of the statements below is true :

x < y,       x = y,      y < x

(ii) Let x, y, z Î S. Then if x < y and y < z, it is always true that x < z. 

Definition: An ordered set is a set S in which an order k is defined. For example, Q is an 

ordered set if r < s is defined to mean that s - r is a positive rational number. 

Definition: Suppose S is an ordered set, and E Ì S. If there exists a Β Î S such that 

x £ Β for every x Î E, then we say that E is bounded above, and call Β an upper bound of 

E. Lower bounds are defined in the same way (with ³ in place of £). 

Definition: Suppose S is an ordered set, E Ì S, and E is bounded above. Moreover, 

suppose there exists an Α Î S with the following properties:

(i)  Α is an upper bound of E.

(ii) If Γ < Α, then Γ is not an upper bound of E.

Then Α is called the least upper bound or supremum of E, denoted Α = supHEL.

The greatest lower bound, or infimum, of a set E which is bounded below is defined in 

the same manner. The statement Α = infHEL means that Α is a lower bound of E and that 

no Β with Β > Α is a lower bound of E. 

Example:

a) Consider the sets A and B described above as subsets of the ordered set Q. The set A 

is bounded above. In fact, the upper bounds of A are exactly the members of B. Since B 

contains no smallest member, A has no least upper bound in Q. Similarly, B is bounded 

below: the set of all lower bounds of B consists of A and of all r Î Q with r £ 0. Since A 

has no largest member, B has no greatest lower bound in Q.    

b) If Α = supHEL exists, then Α may or may not be a member of E. For instance, let E1 be 

the set of all r Î Q with r < 0. Let E2 be the set of all r Î Q with r £ 0. Then 

supHE1L = supHE2L = 0  with 0 Ï E1 and 0 Î E2.     

c) Let E consist of all numbers 1 � n, where n = 1, 2, 3, ...

Then supHEL = 1, which is in E, and infHEL = 0, which is not in E.                Ù

Definition: An ordered set S is said to have the least upper bound property if the follow-

ing is true: If E Ì S is not empty, and E is bounded above, then supHEL exists in S.   ** 

Note: Observe that Q does not have the least upper bound property. **

We now show that every set S with the least upper bound property also has the greatest 

lower bound property. 

• Theorem:

Suppose S is an ordered set with the least upper bound property and let B Ì S  be 

nonempty and bounded below. In addition, let L be the set of all lower bounds of B. 

Then Α = supHLL exists in S  and Α = infHBL. In particular, infHBL exists in S.

Proof:

Since B is bounded below, L is nonempty. Since L consists of exactly those y Î S which 

satisfy the inequality y £ x  " x Î B, we see that every x Î B is an upper bound of L. 

Then L is bounded above.

Our hypothesis about S implies therefore that L has a supremum in S, call it Α. If Γ < Α, 

then Γ is not an upper bound of L. In particular, there is some Β Î L such that Γ < Β, 

implying that Γ is a lower bound of B. Thus Α £ x  " x Î B. It follows that Α Î L. If Α < Λ, 

then Λ Ï L, since Α is an upper bound of L.

Thus we have shown that Α Î L but Λ Ï L if Α < Λ. In other words, Α is a lower bound of 

B but Λ is not if Λ > Α. This implies that Α = infHBL.                 à

• Existence Theorem:

There exists an ordered field R which has the least upper bound property. Moreover, R 

contains Q as a subfield. 

Proof: (On Rudin’s, chapter 1 appendix)             à

We now derive some important properties of the field R.

• Axiom of Completeness: 

Every nonempty set of real numbers that is bounded above has a least upper bound. 

• Theorem:

a) If x, y Î R, and x > 0, then there is a positive integer n such that n x > y. 

b) If x, y Î R, and x < y, then there exists a p Î Q such that x < p < y. 

**Note: Part a) is usually referred to as the archimedian property of  R. Part b) may be 

stated by saying that  Q is dense in  R: Between any two real numbers there is a rational 

one. **

Proof:

a) Set A = 8n x : n Î N<. Now let’s assume that a) is false, so that y is an upper bound of A, 

and define Α = supHAL. We have that x > 0, which implies that Α - x < Α, and this in turn 

means that Α - x  is not an upper bound of A. 

Hence Α - x < m x  for some positive integer m. But then Α < Hm + 1L x Î A, which contra-

dicts the statement that Α = supHAL. (ÞÜ)

Therefore A is not bounded above.        ª

b) Since x < y, we have y - x > 0. From a), we conclude that there is an integer n > 0 

such that  nH y - xL > 1. Observe that, for some integer m, we have m - 1 £ n x < m. 

Observe also that m £ 1 + n x < n y. 

Thus, since n x < m, we have n x < m < n y. In particular, x <
m

n
< y. This proves b), with 

p =
m

n
.      ª        à

 

Now we are ready to prove the existence of nth roots of positive reals. 

• Theorem: 

For every real x > 0 and every integer n > 0, there is one and only one real y such that 

yn = x. 

Proof:

That there is at most one such y is clear, since if there was another y1, then we would 

have y < y1, which implies that yn < y1
n or y1 < y which implies that y1

n < yn.    

Let E be the set consisting of all positive real numbers t such that tn < x, i.e. 

E = 8t Î R
+ : tn < x<, with x Î R. We first need to show that E is not empty. 

If we let  t =
x

1+x
, then 0 £ t < 1. Hence tn £ t < x, which means that t Î E, thus E is not 

empty. 

If t > 1 + x, then tn ³ t > x, so that t Ï E. Thus 1 + x is an upper bound of E. 

Hence, the existence theorem implies that there exists an element y such that 

y = supHEL. 

We initially set out to prove that yn = x. To show that this is true, we must now show 

that the inequalities yn < x  and yn > x  yield a contradiction. 

The identity 

       bn - an = Hb - aL Ibn-1 + bn-2 a + bn-3 a2 + ... + an-1M 

yields the inequality 

       bn - an < Hb - aL Ibn-1 + bn-1 + ... + bn-1M = Hb - aL n bn-1.

So

      bn - an < Hb - aL n bn-1      

when 0 < a < b.  

We are now going to use this identity. 

Let b > a > 0 and set h = b - a. So 0 < h < 1 and 

                      h <
x- yn

nH y+1Ln-1

Put a = y, b = y + h. Then

                      H y + hLn - yn < h nH y + hLn-1 < h nH y + 1Ln-1 < x - yn. 

Thus H y + hLn < x, and y + h Î E. Since y + h > y, this contradicts the fact that y is an 

upper bound of E. 

Assume that yn > x and then set 

                    k =
yn-x

n yn-1

Clearly k > 0. Observe that n k =
yn-x

yn-1
<

yn

yn-1
= y. 

In particular, 0 < k < y. 

Thus, 

         yn - H y - kLn < k n yn-1 = yn - x . 

In particular, 

              x < H y - kLn. 

It follows that y - k is an upper bound of E. 

But y - k < y, which contradicts the fact that y is the least upper bound of E. 

Hence, yn = x , as we set out to prove.  à

(Alternate) Proof:

Let E be defined as before. Follow the argument of the proof above to show that E is not 

empty and bounded above. Then set y = supHEL. 

We will show that yn = x  by proving that yn - x < Ε  for any Ε > 0.  This will imply that 

yn - x = 0  or yn = x. 

Let h > 0. If h < y, then y - h is a positive number that is not an upper bound of E. In 

particular, there is some t Î E such that y - h < t < y and therefore 

            H y - hLn < tn < x .

Thus, y - h Î E. 

Observe now that H y + hLn > x, for if H y + hLn £ x, then J y +
h

2
N
n

< H y + hLn £ x implying that 

y +
h

2
Î E and contradicting the fact that y is an upper bound of E. 

It follows that H y - hLn < x < H y + hLn. Naturally, H y - hLn < yn < H y + hLn. 

         

Geometrically, the distance from yn to x, yn - x , is less than H y + hLn - H y - hLn. This can 

be proven analytically without much difficulty. 

Thus, 

yn - x < H y + hLn - H y - hLn = 2 Ú
i=0

f
n-1

2
v

n

2 i + 1
yn-2 i-1 h2 i+1

       < 2 h Ú
i=0

f
n-1

2
v

n

2 i + 1
yn-2 i-1

The expression 

                                  2 Ú
i=0

f
n-1

2
v

n

2 i + 1
yn-2 i-1 h2 i

was derived from expanding H y + hLn - H y - hLn with the help of the binomial theorem. The 

last inequality was derived from the assumption that h may be selected to be less than 1. 

Notice that B = 2 Ú
i=0

f
n-1

2
v

n

2 i + 1
yn-2 i-1 is just a number and h B < Ε for any Ε given a suffi-

ciently small h. Thus, yn - x < Ε as desired.    à

• Corollary: 

If a and b are positive real numbers and n is a positive integer, then

 Ha bL1�n = a1�n b1�n

Proof:

Let Α = a1�n and Β = b1�n. Then 

 a b = Αn Βn = HΑ ΒLn,

since multiplication is commutative. The uniqueness assertion of the theorem to which 

this is a corollary shows that 

Ha bL1�n = Α Β = a1�n b1�n.       à

One approach to describe the elements of  R is by using decimals. The following proposi-

tions give some insight. 

• Proposition:

Fix an integer p ³ 2 and let 8an< be any sequence of integers satisfying 0 £ an £ p - 1 for 

all n. Then, Ú
n=1

¥
an

pn converges to a number in @0, 1D. 

Proof:

Since an ³ 0, the partial sums Ú
n=1

N
an

pn  are nonnegative and increase with N . Thus, to show 

that the series converges to some number in @0, 1D, we just need to show that 1 is an 

upper bound for the sequence of partial sums. 

But this is easy:

     Ú
n=1

N
an

pn £ Ú
n=1

N
p-1

pn £ I p - 1M Ú
n=1

¥
1

pn = 1 à

Consequently, each x in @0, 1D can be so represented:

• Proposition:

Let p be an integer, p ³ 2, and let 0 £ x £ 1. Then there is a sequence of integers 8an< 

with 0 £ an £ p - 1 for all n such that x = Ú
n=1

¥
an

pn .

Proof:

Certainly the case x = 0 causes no real strain, so let us suppose that 0 < x £ 1. We will 

then construct 8an< by induction. 

Choose a1 to be the largest integer satisfying 
a1

p
< x. Since x > 0, it follows that a1 ³ 0; 

and since x £ 1, we have a1 < p. Because a1 is an integer, this means that a1 £ p - 1. Also, 

since a1 is largest, we must have

  
a1

p
< x £

a1+1
p

.

Next, choose a2 to be the largest integer satisfying 
a1

p
+

a2

p2
< x.

Check that 0 £ a2 £ p - 1 and that

        
a1

p
+

a2

p2
< x £

a1

p
+

a2 +1

p2
.

Thus, by induction we get a sequence of integers 8an< 
with 0 £ an £ p - 1 such that 

                  
a1

p
+ ... +

an

pn
< x £

a1

p
+ ... +

an +1

pn

Obviously, x = Ú
n=1

¥
an

pn . (Why??)    à 

Note: The series Ú
n=1

¥
an

pn  is called a base p (or p-adic) decimal expansion for x. It is some-

times written in the shorter form 

       x = 0. a1 a2 a3 ... Ibase pM .

It does not have to be unique (even for ordinary base 10 decimals: 0.5 = 0.4999 ...). One 

problem is that our construction is designed to produce nonterminating decimal expan-

sions. In the particular case where x =
a1

p
+ ... +

an +1

p
n =

q

pn , for some integer 0 < q £ pn, 

the construction will give us a repeating string of p - 1’s  in the decimal expansion for x 

since 
1

pn = Ú
k=n+1

¥
p-1

pk
. That is, any such x has two distinct base p decimal expansions: 

       x =
a1

p
+ ... +

an +1

p
n =

a1

p
+ ... +

an

p
n + Ú

k=n+1

¥
p-1

pk

Notice that if y Î R, for any n Î N we have y Î @n, n + 1D. In particular, there is some 

x Î @0, 1D such that y = n + x. By the work done above, this means that any real number y 

is an infinite sum of rational numbers.

Note: This is the end of our introductory discussion of the real line. The theorem below 

belongs to the complex realm and, since our focus on this course is on real numbers, this 

is the only theorem of complex variables that I will include in these notes (and I’m includ-

ing it because of its relevance).  

• Theorem (Cauchy-Schwarz inequality): 

If a1, ..., an and  b1, ..., bn are complex numbers, then 

      Ú
j=1

n

a j b j

2

£ Ú
j=1

n

¡a j¥
2 Ú

j=1

n

 b j¤
2

      

Proof:

Let A = â ¡a j¥
2
, B = â  b j¤

2
, and C = âa j b j. 

If B = 0, then b1 =. .. = bn = 0, and the conclusion is trivial. 

Therefore, assume B > 0. Then, 

0 £ â¡B a j - C b j¥
2

= âIB a j - C b jM IB a j - C b jM

     = B2 â ¡ a j ¥2 - B C âa j b j - B C Úa j b j +   C ¤2 â ¡ b j ¥2

     = B2 A - B   C ¤2 = BIA B -   C ¤2M

This implies that A B -   C ¤2 ³ 0, so A B ³   C ¤2. à

Real Number System.nb    7



• Proposition:

Let p be a prime number. Then there are no integers m, n Î Z such that I m

n
M2

= p. 

Proof:

Suppose that such a number does in fact exist. That is, suppose that there is a rational 

fraction 
m

n
 such that I m

n
M
2

= p . We can assume that this fraction is in simplest terms, i.e. 

gcdHm, nL = 1, since otherwise we could just divide by the common factor and get an 

equivalent fraction. 

Then the equation above can be written as m2 = n2 p, which means that p m2 (p divides 

m2). Thus, it follows that p m. In particular, there exists an integer k such that m = k p, 

from which it follows that

 m2 = k2 p2 = n2 p � k2 p = n2

But this means that p n2 and therefore that p n.  (ÞÜ)

This is a contradiction, because 1 = gcdHm, nL ³ p > 1. Thus, we conclude that no rational 

function x2 = p exists.       à             

Observation: 

Let p be a prime number,  and set A = 9r Î Q
+ : r2 < p= and B = 9r Î Q

+ : r2 > p=. Then for 

each r Î A there exists s Î A, such that r < s. Similarly, for each r Î B there exists s Î B, 

such that s < r. 

Let’s define this number s :

ð If  r Î A, then

        r2 < p� r < p = r + J p - rN

            = r + J p - rN ×
J p + rN

J p + rN

            = r +
p- r2

p +r

> r +
p- r2

p+r

we call this number s

> r

ð Similarly, if r Î B, we have

                      r2 > p� r > p = r - Jr - p N

                             = r - Jr - p N ×
Jr + p N

Jr + p N

                          = r -
r2- p

r+ p

< r -
r2- p

r+ p

we call this number s

< r

Then s Î Q
+. If r Î A, then r2 - p < 0, implying that r < s. On the other hand, if r Î B, 

then r2 - p > 0, implying that r > s. 

Note: The observation above suggests that any element in B Ì Q is an upper bound of A. 

In other words, if s Î B and r Î A, then r < s. 

Furthermore A has no smallest upper bound (in R):

For any s Î B, there is an s1 < s, with s1 Î B, such that s1 is an upper bound of A. Similar 

reasoning shows that B is bounded below by elements in A with no largest lower bound. 

We will soon examine this observation more closely. 

Definition: Let S be a set. An order on S is a relation, denoted by < , with the following 

two properties:

(i) If x, y Î S, then one and only one of the statements below is true :

x < y,       x = y,      y < x

(ii) Let x, y, z Î S. Then if x < y and y < z, it is always true that x < z. 

Definition: An ordered set is a set S in which an order k is defined. For example, Q is an 

ordered set if r < s is defined to mean that s - r is a positive rational number. 

Definition: Suppose S is an ordered set, and E Ì S. If there exists a Β Î S such that 

x £ Β for every x Î E, then we say that E is bounded above, and call Β an upper bound of 

E. Lower bounds are defined in the same way (with ³ in place of £). 

Definition: Suppose S is an ordered set, E Ì S, and E is bounded above. Moreover, 

suppose there exists an Α Î S with the following properties:

(i)  Α is an upper bound of E.

(ii) If Γ < Α, then Γ is not an upper bound of E.

Then Α is called the least upper bound or supremum of E, denoted Α = supHEL.

The greatest lower bound, or infimum, of a set E which is bounded below is defined in 

the same manner. The statement Α = infHEL means that Α is a lower bound of E and that 

no Β with Β > Α is a lower bound of E. 

Example:

a) Consider the sets A and B described above as subsets of the ordered set Q. The set A 

is bounded above. In fact, the upper bounds of A are exactly the members of B. Since B 

contains no smallest member, A has no least upper bound in Q. Similarly, B is bounded 

below: the set of all lower bounds of B consists of A and of all r Î Q with r £ 0. Since A 

has no largest member, B has no greatest lower bound in Q.    

b) If Α = supHEL exists, then Α may or may not be a member of E. For instance, let E1 be 

the set of all r Î Q with r < 0. Let E2 be the set of all r Î Q with r £ 0. Then 

supHE1L = supHE2L = 0  with 0 Ï E1 and 0 Î E2.     

c) Let E consist of all numbers 1 � n, where n = 1, 2, 3, ...

Then supHEL = 1, which is in E, and infHEL = 0, which is not in E.                Ù

Definition: An ordered set S is said to have the least upper bound property if the follow-

ing is true: If E Ì S is not empty, and E is bounded above, then supHEL exists in S.   ** 

Note: Observe that Q does not have the least upper bound property. **

We now show that every set S with the least upper bound property also has the greatest 

lower bound property. 

• Theorem:

Suppose S is an ordered set with the least upper bound property and let B Ì S  be 

nonempty and bounded below. In addition, let L be the set of all lower bounds of B. 

Then Α = supHLL exists in S  and Α = infHBL. In particular, infHBL exists in S.

Proof:

Since B is bounded below, L is nonempty. Since L consists of exactly those y Î S which 

satisfy the inequality y £ x  " x Î B, we see that every x Î B is an upper bound of L. 

Then L is bounded above.

Our hypothesis about S implies therefore that L has a supremum in S, call it Α. If Γ < Α, 

then Γ is not an upper bound of L. In particular, there is some Β Î L such that Γ < Β, 

implying that Γ is a lower bound of B. Thus Α £ x  " x Î B. It follows that Α Î L. If Α < Λ, 

then Λ Ï L, since Α is an upper bound of L.

Thus we have shown that Α Î L but Λ Ï L if Α < Λ. In other words, Α is a lower bound of 

B but Λ is not if Λ > Α. This implies that Α = infHBL.                 à

• Existence Theorem:

There exists an ordered field R which has the least upper bound property. Moreover, R 

contains Q as a subfield. 

Proof: (On Rudin’s, chapter 1 appendix)             à

We now derive some important properties of the field R.

• Axiom of Completeness: 

Every nonempty set of real numbers that is bounded above has a least upper bound. 

• Theorem:

a) If x, y Î R, and x > 0, then there is a positive integer n such that n x > y. 

b) If x, y Î R, and x < y, then there exists a p Î Q such that x < p < y. 

**Note: Part a) is usually referred to as the archimedian property of  R. Part b) may be 

stated by saying that  Q is dense in  R: Between any two real numbers there is a rational 

one. **

Proof:

a) Set A = 8n x : n Î N<. Now let’s assume that a) is false, so that y is an upper bound of A, 

and define Α = supHAL. We have that x > 0, which implies that Α - x < Α, and this in turn 

means that Α - x  is not an upper bound of A. 

Hence Α - x < m x  for some positive integer m. But then Α < Hm + 1L x Î A, which contra-

dicts the statement that Α = supHAL. (ÞÜ)

Therefore A is not bounded above.        ª

b) Since x < y, we have y - x > 0. From a), we conclude that there is an integer n > 0 

such that  nH y - xL > 1. Observe that, for some integer m, we have m - 1 £ n x < m. 

Observe also that m £ 1 + n x < n y. 

Thus, since n x < m, we have n x < m < n y. In particular, x <
m

n
< y. This proves b), with 

p =
m

n
.      ª        à

 

Now we are ready to prove the existence of nth roots of positive reals. 

• Theorem: 

For every real x > 0 and every integer n > 0, there is one and only one real y such that 

yn = x. 

Proof:

That there is at most one such y is clear, since if there was another y1, then we would 

have y < y1, which implies that yn < y1
n or y1 < y which implies that y1

n < yn.    

Let E be the set consisting of all positive real numbers t such that tn < x, i.e. 

E = 8t Î R
+ : tn < x<, with x Î R. We first need to show that E is not empty. 

If we let  t =
x

1+x
, then 0 £ t < 1. Hence tn £ t < x, which means that t Î E, thus E is not 

empty. 

If t > 1 + x, then tn ³ t > x, so that t Ï E. Thus 1 + x is an upper bound of E. 

Hence, the existence theorem implies that there exists an element y such that 

y = supHEL. 

We initially set out to prove that yn = x. To show that this is true, we must now show 

that the inequalities yn < x  and yn > x  yield a contradiction. 

The identity 

       bn - an = Hb - aL Ibn-1 + bn-2 a + bn-3 a2 + ... + an-1M 

yields the inequality 

       bn - an < Hb - aL Ibn-1 + bn-1 + ... + bn-1M = Hb - aL n bn-1.

So

      bn - an < Hb - aL n bn-1      

when 0 < a < b.  

We are now going to use this identity. 

Let b > a > 0 and set h = b - a. So 0 < h < 1 and 

                      h <
x- yn

nH y+1Ln-1

Put a = y, b = y + h. Then

                      H y + hLn - yn < h nH y + hLn-1 < h nH y + 1Ln-1 < x - yn. 

Thus H y + hLn < x, and y + h Î E. Since y + h > y, this contradicts the fact that y is an 

upper bound of E. 

Assume that yn > x and then set 

                    k =
yn-x

n yn-1

Clearly k > 0. Observe that n k =
yn-x

yn-1
<

yn

yn-1
= y. 

In particular, 0 < k < y. 

Thus, 

         yn - H y - kLn < k n yn-1 = yn - x . 

In particular, 

              x < H y - kLn. 

It follows that y - k is an upper bound of E. 

But y - k < y, which contradicts the fact that y is the least upper bound of E. 

Hence, yn = x , as we set out to prove.  à

(Alternate) Proof:

Let E be defined as before. Follow the argument of the proof above to show that E is not 

empty and bounded above. Then set y = supHEL. 

We will show that yn = x  by proving that yn - x < Ε  for any Ε > 0.  This will imply that 

yn - x = 0  or yn = x. 

Let h > 0. If h < y, then y - h is a positive number that is not an upper bound of E. In 

particular, there is some t Î E such that y - h < t < y and therefore 

            H y - hLn < tn < x .

Thus, y - h Î E. 

Observe now that H y + hLn > x, for if H y + hLn £ x, then J y +
h

2
N
n

< H y + hLn £ x implying that 

y +
h

2
Î E and contradicting the fact that y is an upper bound of E. 

It follows that H y - hLn < x < H y + hLn. Naturally, H y - hLn < yn < H y + hLn. 

         

Geometrically, the distance from yn to x, yn - x , is less than H y + hLn - H y - hLn. This can 

be proven analytically without much difficulty. 

Thus, 

yn - x < H y + hLn - H y - hLn = 2 Ú
i=0

f
n-1

2
v

n

2 i + 1
yn-2 i-1 h2 i+1

       < 2 h Ú
i=0

f
n-1

2
v

n

2 i + 1
yn-2 i-1

The expression 

                                  2 Ú
i=0

f
n-1

2
v

n

2 i + 1
yn-2 i-1 h2 i

was derived from expanding H y + hLn - H y - hLn with the help of the binomial theorem. The 

last inequality was derived from the assumption that h may be selected to be less than 1. 

Notice that B = 2 Ú
i=0

f
n-1

2
v

n

2 i + 1
yn-2 i-1 is just a number and h B < Ε for any Ε given a suffi-

ciently small h. Thus, yn - x < Ε as desired.    à

• Corollary: 

If a and b are positive real numbers and n is a positive integer, then

 Ha bL1�n = a1�n b1�n

Proof:

Let Α = a1�n and Β = b1�n. Then 

 a b = Αn Βn = HΑ ΒLn,

since multiplication is commutative. The uniqueness assertion of the theorem to which 

this is a corollary shows that 

Ha bL1�n = Α Β = a1�n b1�n.       à

One approach to describe the elements of  R is by using decimals. The following proposi-

tions give some insight. 

• Proposition:

Fix an integer p ³ 2 and let 8an< be any sequence of integers satisfying 0 £ an £ p - 1 for 

all n. Then, Ú
n=1

¥
an

pn converges to a number in @0, 1D. 

Proof:

Since an ³ 0, the partial sums Ú
n=1

N
an

pn  are nonnegative and increase with N . Thus, to show 

that the series converges to some number in @0, 1D, we just need to show that 1 is an 

upper bound for the sequence of partial sums. 

But this is easy:

     Ú
n=1

N
an

pn £ Ú
n=1

N
p-1

pn £ I p - 1M Ú
n=1

¥
1

pn = 1 à

Consequently, each x in @0, 1D can be so represented:

• Proposition:

Let p be an integer, p ³ 2, and let 0 £ x £ 1. Then there is a sequence of integers 8an< 

with 0 £ an £ p - 1 for all n such that x = Ú
n=1

¥
an

pn .

Proof:

Certainly the case x = 0 causes no real strain, so let us suppose that 0 < x £ 1. We will 

then construct 8an< by induction. 

Choose a1 to be the largest integer satisfying 
a1

p
< x. Since x > 0, it follows that a1 ³ 0; 

and since x £ 1, we have a1 < p. Because a1 is an integer, this means that a1 £ p - 1. Also, 

since a1 is largest, we must have

  
a1

p
< x £

a1+1
p

.

Next, choose a2 to be the largest integer satisfying 
a1

p
+

a2

p2
< x.

Check that 0 £ a2 £ p - 1 and that

        
a1

p
+

a2

p2
< x £

a1

p
+

a2 +1

p2
.

Thus, by induction we get a sequence of integers 8an< 
with 0 £ an £ p - 1 such that 

                  
a1

p
+ ... +

an

pn
< x £

a1

p
+ ... +

an +1

pn

Obviously, x = Ú
n=1

¥
an

pn . (Why??)    à 

Note: The series Ú
n=1

¥
an

pn  is called a base p (or p-adic) decimal expansion for x. It is some-

times written in the shorter form 

       x = 0. a1 a2 a3 ... Ibase pM .

It does not have to be unique (even for ordinary base 10 decimals: 0.5 = 0.4999 ...). One 

problem is that our construction is designed to produce nonterminating decimal expan-

sions. In the particular case where x =
a1

p
+ ... +

an +1

p
n =

q

pn , for some integer 0 < q £ pn, 

the construction will give us a repeating string of p - 1’s  in the decimal expansion for x 

since 
1

pn = Ú
k=n+1

¥
p-1

pk
. That is, any such x has two distinct base p decimal expansions: 

       x =
a1

p
+ ... +

an +1

p
n =

a1

p
+ ... +

an

p
n + Ú

k=n+1

¥
p-1

pk

Notice that if y Î R, for any n Î N we have y Î @n, n + 1D. In particular, there is some 

x Î @0, 1D such that y = n + x. By the work done above, this means that any real number y 

is an infinite sum of rational numbers.

Note: This is the end of our introductory discussion of the real line. The theorem below 

belongs to the complex realm and, since our focus on this course is on real numbers, this 

is the only theorem of complex variables that I will include in these notes (and I’m includ-

ing it because of its relevance).  

• Theorem (Cauchy-Schwarz inequality): 

If a1, ..., an and  b1, ..., bn are complex numbers, then 

      Ú
j=1

n

a j b j

2

£ Ú
j=1

n

¡a j¥
2 Ú

j=1

n

 b j¤
2

      

Proof:

Let A = â ¡a j¥
2
, B = â  b j¤

2
, and C = âa j b j. 

If B = 0, then b1 =. .. = bn = 0, and the conclusion is trivial. 

Therefore, assume B > 0. Then, 

0 £ â¡B a j - C b j¥
2

= âIB a j - C b jM IB a j - C b jM

     = B2 â ¡ a j ¥2 - B C âa j b j - B C Úa j b j +   C ¤2 â ¡ b j ¥2

     = B2 A - B   C ¤2 = BIA B -   C ¤2M

This implies that A B -   C ¤2 ³ 0, so A B ³   C ¤2. à
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• Proposition:

Let p be a prime number. Then there are no integers m, n Î Z such that I m

n
M2

= p. 

Proof:

Suppose that such a number does in fact exist. That is, suppose that there is a rational 

fraction 
m

n
 such that I m

n
M
2

= p . We can assume that this fraction is in simplest terms, i.e. 

gcdHm, nL = 1, since otherwise we could just divide by the common factor and get an 

equivalent fraction. 

Then the equation above can be written as m2 = n2 p, which means that p m2 (p divides 

m2). Thus, it follows that p m. In particular, there exists an integer k such that m = k p, 

from which it follows that

 m2 = k2 p2 = n2 p � k2 p = n2

But this means that p n2 and therefore that p n.  (ÞÜ)

This is a contradiction, because 1 = gcdHm, nL ³ p > 1. Thus, we conclude that no rational 

function x2 = p exists.       à             

Observation: 

Let p be a prime number,  and set A = 9r Î Q
+ : r2 < p= and B = 9r Î Q

+ : r2 > p=. Then for 

each r Î A there exists s Î A, such that r < s. Similarly, for each r Î B there exists s Î B, 

such that s < r. 

Let’s define this number s :

ð If  r Î A, then

        r2 < p� r < p = r + J p - rN

            = r + J p - rN ×
J p + rN

J p + rN

            = r +
p- r2

p +r

> r +
p- r2

p+r

we call this number s

> r

ð Similarly, if r Î B, we have

                      r2 > p� r > p = r - Jr - p N

                             = r - Jr - p N ×
Jr + p N

Jr + p N

                          = r -
r2- p

r+ p

< r -
r2- p

r+ p

we call this number s

< r

Then s Î Q
+. If r Î A, then r2 - p < 0, implying that r < s. On the other hand, if r Î B, 

then r2 - p > 0, implying that r > s. 

Note: The observation above suggests that any element in B Ì Q is an upper bound of A. 

In other words, if s Î B and r Î A, then r < s. 

Furthermore A has no smallest upper bound (in R):

For any s Î B, there is an s1 < s, with s1 Î B, such that s1 is an upper bound of A. Similar 

reasoning shows that B is bounded below by elements in A with no largest lower bound. 

We will soon examine this observation more closely. 

Definition: Let S be a set. An order on S is a relation, denoted by < , with the following 

two properties:

(i) If x, y Î S, then one and only one of the statements below is true :

x < y,       x = y,      y < x

(ii) Let x, y, z Î S. Then if x < y and y < z, it is always true that x < z. 

Definition: An ordered set is a set S in which an order k is defined. For example, Q is an 

ordered set if r < s is defined to mean that s - r is a positive rational number. 

Definition: Suppose S is an ordered set, and E Ì S. If there exists a Β Î S such that 

x £ Β for every x Î E, then we say that E is bounded above, and call Β an upper bound of 

E. Lower bounds are defined in the same way (with ³ in place of £). 

Definition: Suppose S is an ordered set, E Ì S, and E is bounded above. Moreover, 

suppose there exists an Α Î S with the following properties:

(i)  Α is an upper bound of E.

(ii) If Γ < Α, then Γ is not an upper bound of E.

Then Α is called the least upper bound or supremum of E, denoted Α = supHEL.

The greatest lower bound, or infimum, of a set E which is bounded below is defined in 

the same manner. The statement Α = infHEL means that Α is a lower bound of E and that 

no Β with Β > Α is a lower bound of E. 

Example:

a) Consider the sets A and B described above as subsets of the ordered set Q. The set A 

is bounded above. In fact, the upper bounds of A are exactly the members of B. Since B 

contains no smallest member, A has no least upper bound in Q. Similarly, B is bounded 

below: the set of all lower bounds of B consists of A and of all r Î Q with r £ 0. Since A 

has no largest member, B has no greatest lower bound in Q.    

b) If Α = supHEL exists, then Α may or may not be a member of E. For instance, let E1 be 

the set of all r Î Q with r < 0. Let E2 be the set of all r Î Q with r £ 0. Then 

supHE1L = supHE2L = 0  with 0 Ï E1 and 0 Î E2.     

c) Let E consist of all numbers 1 � n, where n = 1, 2, 3, ...

Then supHEL = 1, which is in E, and infHEL = 0, which is not in E.                Ù

Definition: An ordered set S is said to have the least upper bound property if the follow-

ing is true: If E Ì S is not empty, and E is bounded above, then supHEL exists in S.   ** 

Note: Observe that Q does not have the least upper bound property. **

We now show that every set S with the least upper bound property also has the greatest 

lower bound property. 

• Theorem:

Suppose S is an ordered set with the least upper bound property and let B Ì S  be 

nonempty and bounded below. In addition, let L be the set of all lower bounds of B. 

Then Α = supHLL exists in S  and Α = infHBL. In particular, infHBL exists in S.

Proof:

Since B is bounded below, L is nonempty. Since L consists of exactly those y Î S which 

satisfy the inequality y £ x  " x Î B, we see that every x Î B is an upper bound of L. 

Then L is bounded above.

Our hypothesis about S implies therefore that L has a supremum in S, call it Α. If Γ < Α, 

then Γ is not an upper bound of L. In particular, there is some Β Î L such that Γ < Β, 

implying that Γ is a lower bound of B. Thus Α £ x  " x Î B. It follows that Α Î L. If Α < Λ, 

then Λ Ï L, since Α is an upper bound of L.

Thus we have shown that Α Î L but Λ Ï L if Α < Λ. In other words, Α is a lower bound of 

B but Λ is not if Λ > Α. This implies that Α = infHBL.                 à

• Existence Theorem:

There exists an ordered field R which has the least upper bound property. Moreover, R 

contains Q as a subfield. 

Proof: (On Rudin’s, chapter 1 appendix)             à

We now derive some important properties of the field R.

• Axiom of Completeness: 

Every nonempty set of real numbers that is bounded above has a least upper bound. 

• Theorem:

a) If x, y Î R, and x > 0, then there is a positive integer n such that n x > y. 

b) If x, y Î R, and x < y, then there exists a p Î Q such that x < p < y. 

**Note: Part a) is usually referred to as the archimedian property of  R. Part b) may be 

stated by saying that  Q is dense in  R: Between any two real numbers there is a rational 

one. **

Proof:

a) Set A = 8n x : n Î N<. Now let’s assume that a) is false, so that y is an upper bound of A, 

and define Α = supHAL. We have that x > 0, which implies that Α - x < Α, and this in turn 

means that Α - x  is not an upper bound of A. 

Hence Α - x < m x  for some positive integer m. But then Α < Hm + 1L x Î A, which contra-

dicts the statement that Α = supHAL. (ÞÜ)

Therefore A is not bounded above.        ª

b) Since x < y, we have y - x > 0. From a), we conclude that there is an integer n > 0 

such that  nH y - xL > 1. Observe that, for some integer m, we have m - 1 £ n x < m. 

Observe also that m £ 1 + n x < n y. 

Thus, since n x < m, we have n x < m < n y. In particular, x <
m

n
< y. This proves b), with 

p =
m

n
.      ª        à

 

Now we are ready to prove the existence of nth roots of positive reals. 

• Theorem: 

For every real x > 0 and every integer n > 0, there is one and only one real y such that 

yn = x. 

Proof:

That there is at most one such y is clear, since if there was another y1, then we would 

have y < y1, which implies that yn < y1
n or y1 < y which implies that y1

n < yn.    

Let E be the set consisting of all positive real numbers t such that tn < x, i.e. 

E = 8t Î R
+ : tn < x<, with x Î R. We first need to show that E is not empty. 

If we let  t =
x

1+x
, then 0 £ t < 1. Hence tn £ t < x, which means that t Î E, thus E is not 

empty. 

If t > 1 + x, then tn ³ t > x, so that t Ï E. Thus 1 + x is an upper bound of E. 

Hence, the existence theorem implies that there exists an element y such that 

y = supHEL. 

We initially set out to prove that yn = x. To show that this is true, we must now show 

that the inequalities yn < x  and yn > x  yield a contradiction. 

The identity 

       bn - an = Hb - aL Ibn-1 + bn-2 a + bn-3 a2 + ... + an-1M 

yields the inequality 

       bn - an < Hb - aL Ibn-1 + bn-1 + ... + bn-1M = Hb - aL n bn-1.

So

      bn - an < Hb - aL n bn-1      

when 0 < a < b.  

We are now going to use this identity. 

Let b > a > 0 and set h = b - a. So 0 < h < 1 and 

                      h <
x- yn

nH y+1Ln-1

Put a = y, b = y + h. Then

                      H y + hLn - yn < h nH y + hLn-1 < h nH y + 1Ln-1 < x - yn. 

Thus H y + hLn < x, and y + h Î E. Since y + h > y, this contradicts the fact that y is an 

upper bound of E. 

Assume that yn > x and then set 

                    k =
yn-x

n yn-1

Clearly k > 0. Observe that n k =
yn-x

yn-1
<

yn

yn-1
= y. 

In particular, 0 < k < y. 

Thus, 

         yn - H y - kLn < k n yn-1 = yn - x . 

In particular, 

              x < H y - kLn. 

It follows that y - k is an upper bound of E. 

But y - k < y, which contradicts the fact that y is the least upper bound of E. 

Hence, yn = x , as we set out to prove.  à

(Alternate) Proof:

Let E be defined as before. Follow the argument of the proof above to show that E is not 

empty and bounded above. Then set y = supHEL. 

We will show that yn = x  by proving that yn - x < Ε  for any Ε > 0.  This will imply that 

yn - x = 0  or yn = x. 

Let h > 0. If h < y, then y - h is a positive number that is not an upper bound of E. In 

particular, there is some t Î E such that y - h < t < y and therefore 

            H y - hLn < tn < x .

Thus, y - h Î E. 

Observe now that H y + hLn > x, for if H y + hLn £ x, then J y +
h

2
N
n

< H y + hLn £ x implying that 

y +
h

2
Î E and contradicting the fact that y is an upper bound of E. 

It follows that H y - hLn < x < H y + hLn. Naturally, H y - hLn < yn < H y + hLn. 

         

Geometrically, the distance from yn to x, yn - x , is less than H y + hLn - H y - hLn. This can 

be proven analytically without much difficulty. 

Thus, 

yn - x < H y + hLn - H y - hLn = 2 Ú
i=0

f
n-1

2
v

n

2 i + 1
yn-2 i-1 h2 i+1

       < 2 h Ú
i=0

f
n-1

2
v

n

2 i + 1
yn-2 i-1

The expression 

                                  2 Ú
i=0

f
n-1

2
v

n

2 i + 1
yn-2 i-1 h2 i

was derived from expanding H y + hLn - H y - hLn with the help of the binomial theorem. The 

last inequality was derived from the assumption that h may be selected to be less than 1. 

Notice that B = 2 Ú
i=0

f
n-1

2
v

n

2 i + 1
yn-2 i-1 is just a number and h B < Ε for any Ε given a suffi-

ciently small h. Thus, yn - x < Ε as desired.    à

• Corollary: 

If a and b are positive real numbers and n is a positive integer, then

 Ha bL1�n = a1�n b1�n

Proof:

Let Α = a1�n and Β = b1�n. Then 

 a b = Αn Βn = HΑ ΒLn,

since multiplication is commutative. The uniqueness assertion of the theorem to which 

this is a corollary shows that 

Ha bL1�n = Α Β = a1�n b1�n.       à

One approach to describe the elements of  R is by using decimals. The following proposi-

tions give some insight. 

• Proposition:

Fix an integer p ³ 2 and let 8an< be any sequence of integers satisfying 0 £ an £ p - 1 for 

all n. Then, Ú
n=1

¥
an

pn converges to a number in @0, 1D. 

Proof:

Since an ³ 0, the partial sums Ú
n=1

N
an

pn  are nonnegative and increase with N . Thus, to show 

that the series converges to some number in @0, 1D, we just need to show that 1 is an 

upper bound for the sequence of partial sums. 

But this is easy:

     Ú
n=1

N
an

pn £ Ú
n=1

N
p-1

pn £ I p - 1M Ú
n=1

¥
1

pn = 1 à

Consequently, each x in @0, 1D can be so represented:

• Proposition:

Let p be an integer, p ³ 2, and let 0 £ x £ 1. Then there is a sequence of integers 8an< 

with 0 £ an £ p - 1 for all n such that x = Ú
n=1

¥
an

pn .

Proof:

Certainly the case x = 0 causes no real strain, so let us suppose that 0 < x £ 1. We will 

then construct 8an< by induction. 

Choose a1 to be the largest integer satisfying 
a1

p
< x. Since x > 0, it follows that a1 ³ 0; 

and since x £ 1, we have a1 < p. Because a1 is an integer, this means that a1 £ p - 1. Also, 

since a1 is largest, we must have

  
a1

p
< x £

a1+1
p

.

Next, choose a2 to be the largest integer satisfying 
a1

p
+

a2

p2
< x.

Check that 0 £ a2 £ p - 1 and that

        
a1

p
+

a2

p2
< x £

a1

p
+

a2 +1

p2
.

Thus, by induction we get a sequence of integers 8an< 
with 0 £ an £ p - 1 such that 

                  
a1

p
+ ... +

an

pn
< x £

a1

p
+ ... +

an +1

pn

Obviously, x = Ú
n=1

¥
an

pn . (Why??)    à 

Note: The series Ú
n=1

¥
an

pn  is called a base p (or p-adic) decimal expansion for x. It is some-

times written in the shorter form 

       x = 0. a1 a2 a3 ... Ibase pM .

It does not have to be unique (even for ordinary base 10 decimals: 0.5 = 0.4999 ...). One 

problem is that our construction is designed to produce nonterminating decimal expan-

sions. In the particular case where x =
a1

p
+ ... +

an +1

p
n =

q

pn , for some integer 0 < q £ pn, 

the construction will give us a repeating string of p - 1’s  in the decimal expansion for x 

since 
1

pn = Ú
k=n+1

¥
p-1

pk
. That is, any such x has two distinct base p decimal expansions: 

       x =
a1

p
+ ... +

an +1

p
n =

a1

p
+ ... +

an

p
n + Ú

k=n+1

¥
p-1

pk

Notice that if y Î R, for any n Î N we have y Î @n, n + 1D. In particular, there is some 

x Î @0, 1D such that y = n + x. By the work done above, this means that any real number y 

is an infinite sum of rational numbers.

Note: This is the end of our introductory discussion of the real line. The theorem below 

belongs to the complex realm and, since our focus on this course is on real numbers, this 

is the only theorem of complex variables that I will include in these notes (and I’m includ-

ing it because of its relevance).  

• Theorem (Cauchy-Schwarz inequality): 

If a1, ..., an and  b1, ..., bn are complex numbers, then 

      Ú
j=1

n

a j b j

2

£ Ú
j=1

n

¡a j¥
2 Ú

j=1

n

 b j¤
2

      

Proof:

Let A = â ¡a j¥
2
, B = â  b j¤

2
, and C = âa j b j. 

If B = 0, then b1 =. .. = bn = 0, and the conclusion is trivial. 

Therefore, assume B > 0. Then, 

0 £ â¡B a j - C b j¥
2

= âIB a j - C b jM IB a j - C b jM

     = B2 â ¡ a j ¥2 - B C âa j b j - B C Úa j b j +   C ¤2 â ¡ b j ¥2

     = B2 A - B   C ¤2 = BIA B -   C ¤2M

This implies that A B -   C ¤2 ³ 0, so A B ³   C ¤2. à
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